A classical mechanics problem by Rishabh Deep Singh

Two wheels which are rotated by some external source with constant angular velocity ( ω = π units \omega = \pi \text{ units} ) in opposite directions as shown in the figure above. A uniform plank of mass M = 1 units M = 1\text{ units} is placed symmetrically. The friction coefficient between each wheel and the plank is μ = 1 units \mu = 1\text{ units} . Find the frequency of oscillation, when the plank is slightly displaced along its length ( L = 1 units L=1 \text{ units} ) and relapsed.

Details and Assumptions :

  • g = π 2 units g = \pi^2 \text{ units} .

  • Neglect end effect caused by extra length of plank.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

F.B.D. F.B.D.

I f t h e p l a n k i s d i s p l a c e d b y x t o w a r d s r i g h t t h e n . L e t N 1 , N 2 a n d f 1 , f 2 a r e n o r m a l a n d f r i c t i o n F o r c e s a t P o i n t s A a n d B . B y f o r c e b a l a n c i n g N 1 + N 2 = M g ( 1 ) B y t o r q u e b a l a n c i n g a b o u t p o i n t A M g ( L + x ) = N 2 . ( 2 L ) ( 2 ) U s i n g e q u a t i o n ( 1 ) a n d ( 2 ) N 1 = M g 2 M g x 2 L a n d N 2 = M g 2 + M g x 2 L S o f 1 = μ N 1 = μ ( M g 2 M g x 2 L ) a n d f 2 = μ N 2 = μ ( M g 2 + M g x 2 L ) If\quad the\quad plank\quad is\quad displaced\quad by\quad x\quad towards\quad right\quad then.\\ Let\quad { N }_{ 1 },\quad { N }_{ 2 }\quad and\quad { f }_{ 1 }\quad ,\quad { f }_{ 2 }\quad are\quad normal\quad and\quad friction\\ Forces\quad at\quad Points\quad A\quad and\quad B.\\ By\quad force\quad balancing\quad \\ { N }_{ 1 }+{ N }_{ 2 }=Mg\quad --------(1)\\ By\quad torque\quad balancing\quad about\quad point\quad A\\ Mg(L+x)={ N }_{ 2 }.(2L)\quad \quad \quad \quad --------(2)\\ Using\quad equation\quad (1)\quad and\quad (2)\\ { N }_{ 1 }=\frac { Mg }{ 2 } -\frac { Mgx }{ 2L } \quad \quad and\quad { N }_{ 2 }=\frac { Mg }{ 2 } +\frac { Mgx }{ 2L } \\ So\quad { f }_{ 1 }{ =\mu N }_{ 1 }=\mu \left( \frac { Mg }{ 2 } -\frac { Mgx }{ 2L } \right) \\ and{ \quad f }_{ 2 }{ =\mu N }_{ 2 }=\mu \left( \frac { Mg }{ 2 } +\frac { Mgx }{ 2L } \right) \\

F.B.D. of M F.B.D. of M

f 2 f 1 = M a μ ( 2 M g x 2 l ) = M a = d 2 x d t 2 . M d 2 x d t 2 = μ g x l C o m p a r i n g w i t h d 2 x d t 2 = ( ω ) 2 . x ω = μ g l T i m e p e r i o d T = 2 π ω T = 2 π l μ g F r e q u e n c y ( ν ) = 1 2 π μ g l ν = 1 2 π 1. π 2 1 = π 2 π = 0.5 { f }_{ 2 }{ -f }_{ 1 }=Ma\\ \mu \left( \frac { 2Mgx }{ 2l } \right) =Ma=-\frac { { d }^{ 2 }x }{ d{ t }^{ 2 } } .M\\ \frac { { d }^{ 2 }x }{ d{ t }^{ 2 } } =-\frac { \mu gx }{ l } \\ Comparing\quad with\\ \frac { { d }^{ 2 }x }{ d{ t }^{ 2 } } =-{ \left( \omega \right) }^{ 2 }.x\\ \omega =\sqrt { \frac { \mu g }{ l } } \\ Time\quad period\quad T=\frac { 2\pi }{ \omega } \\ T=2\pi \sqrt { \frac { l }{ \mu g } } \\ Frequency(\nu )=\frac { 1 }{ 2\pi } \sqrt { \frac { \mu g }{ l } } \\ \nu =\frac { 1 }{ 2\pi } \sqrt { \frac { 1.{ \pi }^{ 2 } }{ 1 } } =\frac { \pi }{ 2\pi } =0.5\\

wonderful solution well thought out

Vishnu Prasath - 4 years, 1 month ago

Log in to reply

Thanks, My friend

Rishabh Deep Singh - 4 years, 1 month ago

your welcome

Vishnu Prasath - 4 years, 1 month ago

How is length 2L The answer should be (1/2)^1/2

SUMUKHA ADIGA - 2 years, 9 months ago

Log in to reply

Please red the Question again.

Rishabh Deep Singh - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...