A clever manipulation

Algebra Level 4

Suppose x x and y y are real numbers such that 2 x 2 + y 2 2 x y + 12 y + 72 0 2x^2+y^2-2xy+12y+72\leq 0 . Find the value of x 2 y x^2y .


The answer is -432.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

2 x 2 + y 2 2 x y + 12 y + 72 0 2 x 2 2 x y + ( y + 6 ) 2 + 36 0 x 2 + x 2 2 x ( y + 6 ) + 12 x + ( y + 6 ) 2 + 36 0 ( x + 6 ) 2 + ( x ( y + 6 ) ) 2 0 \begin{aligned} 2x^2 + y^2 - 2xy + 12y + 72 & \le 0 \\ 2x^2 - 2xy + (y+6)^2 + 36 & \le 0 \\ \blue{x^2} + \red{x^2 - 2x(y+6)} \blue{+ 12x} \red{+ (y+6)^2} \blue{+ 36} & \le 0 \\ \blue{(x+6)^2} + \red{(x-(y+6))^2} & \le 0 \end{aligned}

We note that the LHS 0 \text{LHS} \ge 0 . Hence there is only one solution that is the LHS = ( x + 6 ) 2 + ( x ( y + 6 ) ) = 0 \text{LHS} = (x+6)^2 + (x-(y+6))=0 , which is only true when x + 6 = 0 x + 6 = 0 and x ( y + 6 ) = 0 x-(y+6)=0 . Therefore, x = 6 x=-6 , y = 12 y=-12 , and x 2 y = 432 x^2y = \boxed{-432} .

Julian Yu
Nov 2, 2019

Multiply the equation by 2:

4 x 2 + 2 y 2 4 x y + 24 y + 144 0 \implies 4x^2+2y^2-4xy+24y+144\leq 0

( 4 x 2 + y 2 4 x y ) + ( y 2 + 24 y + 144 ) 0 \implies (4x^2+y^2-4xy)+(y^2+24y+144)\leq 0

( 2 x y ) 2 + ( y + 12 ) 2 0 \implies (2x-y)^2+(y+12)^2\leq 0

Since the sum of squares are always non-negative, we must have 2 x y = 0 2x-y=0 and y 12 = 0 y-12=0 . Hence x = 6 x=-6 and y = 12 y=-12 .

This gives us x 2 y = ( 6 ) 2 ( 12 ) = 432 x^2y=(-6)^2\cdot(-12)=\boxed{-432} .

Pedro Cardoso
Nov 12, 2019

say x = p x=p and y = p + q y = p + q . We have:

2 p 2 + ( p + q ) 2 2 p ( p + q ) + 12 ( p + q ) + 72 0 2p^2 + (p+q)^2-2p(p+q)+12(p+q)+72\leq 0

p 2 + q 2 + 12 p + 12 q + 72 0 p^2+q^2+12p+12q+72\leq 0

p 2 + 12 p + 36 + q 2 + 12 q + 36 0 p^2+12p+36+q^2+12q+36\leq 0

( p + 6 ) 2 + ( q + 6 ) 2 0 (p+6)^2+(q+6)^2\leq 0

Now, we can see p = 6 p=-6 and q = 6 q=-6 . Which gives x = 6 x=-6 and y = 12 y=-12

Finally, x 2 y = 12 36 = 432 x^2y=-12 \cdot 36 = -432

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...