A Collision Problem

Chemistry Level 5

The above table gives data about three Ideal gas samples taken in separate equal volume containers.

  • Calculate the ratio of collision frequencies ( Z 11 Z_{11} ) (in the form of A:B:C) for the three gases. Let the ratio be j : k : l . j:k:l.

  • Calculate the number of collision by one molecule per second ( Z 1 Z_{1} ). Let the ratio be m : n : o . m:n:o.

Report the answer as m j + k n + l o . \frac{m}{j} + \frac{k}{n} + \frac{l}{o}.

For those who don't know:

  • Z 11 Z_{11} is the total number of Bimolecular collisions per unit volume per unit time.

  • Z 1 Z_1 is the number of collisions made by a single molecule with other molecules per unit time.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let σ A , σ B \sigma_A , \sigma_B and σ C \sigma_C be the Collision Diameters of A , B A,B and C C .

Let λ \lambda be the Mean Free Path i.e the average distance travelled by a molecule between two successive collisions , P P be the pressure in atm .

λ = k T 2 π σ 2 P σ T λ P \therefore \lambda = \dfrac{k\cdot T}{\sqrt{2}\cdot \pi\cdot \sigma^{2}\cdot P} \\ \Rightarrow \sigma \propto \sqrt{\dfrac{T}{\lambda\cdot P}}

σ A : σ B : σ C 1600 0.16 1 : 200 0.16 2 : 400 0.04 4 = 4 : 1 : 2 \therefore \sigma_A:\sigma_B:\sigma_C \\ \\ \sqrt{\dfrac{1600}{0.16\cdot 1}} : \sqrt{\dfrac{200}{0.16\cdot 2}} : \sqrt{\dfrac{400}{0.04\cdot 4}} \\= 4:1:2

Now using this we'll find the rest .

Z 11 σ 2 P 2 m T 3 Z_{11} \propto \dfrac{\sigma^{2}\cdot P^{2}}{\sqrt{m\cdot T^{3}}} A : B : C = 16 × 1 20 160 0 3 : 1 × 4 40 20 0 3 : 4 × 16 80 40 0 3 1 : 4 : 16 \Rightarrow A:B:C \\ = \dfrac{16\times 1}{\sqrt{20\cdot 1600^{3}}} : \dfrac{1\times 4}{\sqrt{40\cdot 200^{3}}} : \dfrac{4\times 16}{\sqrt{80\cdot 400^{3}}} \\ 1:4:16 .

j = 1 , k = 4 , l = 16 \implies j=1,k=4,l=16

Z 1 σ 2 P M T Z_1 \propto \dfrac{\sigma^{2}\cdot P}{\sqrt{MT}}

A : B : C = 16 1 20 1600 : 1 2 40 200 : 4 4 80 400 = 4 : 1 : 4 \Rightarrow A:B:C \\ = \dfrac{16\cdot 1}{\sqrt{20\cdot 1600}} : \dfrac{1\cdot 2}{\sqrt{40\cdot 200}} : \dfrac{4\cdot 4}{\sqrt{80\cdot 400}} \\= 4:1:4

m = 4 , n = 1 , o = 4 \implies m=4,n=1,o=4

The final answer is m j + k n + l o = 4 1 + 4 1 + 16 4 = 12 \frac{m}{j} + \frac{k}{n} + \frac{l}{o} \\= \frac{4}{1} + \frac{4}{1} + \frac{16}{4} = 12 .

A request to any moderator reading this , please let the table that I have made(yes the pic) stay as it is , currently I don't know the Latex code for making a table but I will learn the code and change it on my own .

Thanks for the same :)

A Former Brilliant Member - 6 years, 3 months ago
Chew-Seong Cheong
Feb 24, 2016

The collision frequency for single molecule Z 1 Z_1 , for all molecules Z 11 Z_{11} , mean free path λ \lambda and average speed of molecule c \overline{c} are given below:

\(\begin{cases} Z_1 = \sqrt{2}\pi d^2 \overline{c} \left(\dfrac{N}{V}\right) &...(1) \\ Z_{11} = \dfrac{1}{2} Z_1 \left(\dfrac{N}{V}\right) &...(2) \\ \lambda = \dfrac{1}{\sqrt{2}d^2 N} & ...(3) \\ \overline{c} = \sqrt{\dfrac{8k_BT}{\pi m}} & ...(4) \end{cases} \quad \begin{array} {} \text{where } & d = \text{the diameter of molecule} \\ & N = \text{the number of molecules in volume }V \\ & k_B = \text{Boltzmann constant} \\ & T = \text{absolute temperature} \\ & m = \text{molecular mass} \end{array} \)

( 1 ) : Z 1 d 2 c N Since ( 3 ) : d 2 1 λ N ( 4 ) : c T m 1 λ T m \begin{aligned} (1): \quad Z_1 & \propto d^2 \overline{c} N \quad \quad \small \color{#3D99F6}{\text{Since } (3): \space d^2 \propto \frac{1}{\lambda N} \quad (4): \space \overline{c} \propto \sqrt{\dfrac{T}{m}}} \\ & \propto \frac{1}{\lambda}\sqrt{\dfrac{T}{m}} \end{aligned}

m : n : o = 1 0.16 1600 20 : 1 0.16 200 40 : 1 0.04 400 80 = 4 : 1 : 4 \Rightarrow m : n : o = \frac{1}{0.16}\sqrt{\frac{1600}{20}} : \frac{1}{0.16}\sqrt{\frac{200}{40}} : \frac{1}{0.04}\sqrt{\frac{400}{80}} = 4: 1 : 4

( 2 ) : Z 11 Z 1 N Since p V = N R T , where p is pressure and R , the universal gas constant Z 1 p T \begin{aligned} (2): \quad Z_{11} & \propto Z_1 N \quad \quad \small \color{#3D99F6}{\text{Since } pV = NRT, \text{ where }p \text{ is pressure and } R \text{, the universal gas constant}} \\ & \propto \frac{Z_1 p}{T} \end{aligned}

j : k : l = m 1600 : 2 n 200 : 4 o 400 = 4 1600 : 2 200 : 16 400 = 1 : 4 : 16 \Rightarrow j : k : l = \frac{m}{1600} : \frac{2n}{200} : \frac{4o}{400} = \frac{4}{1600} : \frac{2}{200} : \frac{16}{400} = 1: 4 : 16

m j + k n + l o = 4 1 + 4 1 + 16 4 = 12 \Rightarrow \dfrac{m}{j} + \dfrac{k}{n} + \dfrac{l}{o} = \dfrac{4}{1} + \dfrac{4}{1} + \dfrac{16}{4} = \boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...