Consider the binomial expansion ( 1 + 2 ) 1 0 0 = = x 0 1 + = x 1 ( 1 1 0 0 ) 2 + = x 2 ( 2 1 0 0 ) ( 2 ) 2 + ⋯ + = x 9 9 ( 9 9 1 0 0 ) ( 2 ) 9 9 + = x 1 0 0 ( 2 ) 1 0 0 .
Find the value of n such that x n is maximized.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
t = List @@ Expand [ ( a + b ) 1 0 0 ] /. { a → 1 , b → 2 } ; Position [ t , max ( t ) ] [ [ 1 , 1 ] ] − 1 ⇒ 5 9
The largest magnitude summand is 1 0 7 9 9 9 3 1 6 0 3 5 4 5 4 0 9 3 4 0 7 5 5 3 6 8 6 8 8 9 0 3 7 8 2 4 0 0 2 . The list of values is
1 1 0 0 2 9 9 0 0 3 2 3 4 0 0 2 1 5 6 8 4 9 0 0 3 0 1 1 5 0 0 8 0 2 9 5 3 6 4 1 9 2 0 0 1 2 8 0 6 0 4 8 6 4 0 0 2 2 9 7 7 4 0 6 3 0 8 8 0 0 3 0 4 3 5 7 0 8 9 3 4 4 0 0 2 5 5 3 9 2 9 9 0 2 6 0 6 0 8 0 4 5 3 2 1 5 3 7 4 8 5 9 5 2 0 0 2 6 7 2 2 6 9 4 7 2 7 0 8 2 8 8 0 0 4 5 5 0 7 4 7 1 9 9 8 7 1 4 8 8 0 0 2 5 6 5 5 9 2 8 6 6 2 6 9 7 4 2 0 8 0 0 3 2 4 2 7 3 2 4 3 3 2 7 9 8 5 4 5 9 2 0 2 3 4 4 5 4 0 3 2 1 0 3 5 9 8 4 5 5 0 4 0 0 1 7 0 2 4 3 4 5 2 7 4 7 1 9 2 3 6 6 0 8 0 0 2 1 5 7 0 0 2 2 9 5 3 1 1 2 9 9 6 2 6 4 9 6 0 0 6 7 7 5 8 8 8 5 3 4 4 8 7 6 6 8 0 9 0 8 8 0 0 2 5 4 8 8 4 6 9 7 1 2 9 3 5 0 1 1 1 5 3 6 1 2 8 0 2 0 9 0 8 4 5 6 0 4 9 2 7 6 2 3 2 9 6 6 1 4 4 0 0 2 1 5 0 1 6 0 7 2 9 8 0 8 4 3 8 4 0 0 3 9 3 2 1 6 0 0 5 0 9 2 4 0 7 3 5 8 7 2 0 9 5 4 4 4 8 1 1 7 7 6 0 0 2 3 2 6 7 6 2 8 0 5 5 1 7 9 2 7 9 1 0 4 2 0 8 8 9 6 0 0 9 9 3 3 5 8 9 2 8 7 7 4 5 0 0 8 4 7 6 7 9 5 0 4 3 8 4 2 5 7 3 0 9 1 6 8 9 6 7 7 5 9 6 6 4 2 8 9 2 0 2 1 7 6 0 0 1 5 7 0 6 9 5 7 4 2 0 7 9 3 3 8 9 4 7 1 8 5 5 4 1 1 2 0 0 2 8 1 9 0 0 5 6 3 6 9 4 1 3 6 9 5 9 3 8 8 9 6 0 3 5 8 4 0 0 2 0 3 3 3 9 3 3 0 5 5 0 9 6 0 7 2 6 7 5 8 7 9 8 1 3 1 2 0 0 2 9 6 2 4 7 2 8 3 1 2 7 4 5 4 7 4 3 9 9 9 1 6 4 4 4 8 7 6 8 0 2 1 7 3 3 2 5 7 4 8 0 3 9 3 0 0 6 7 0 9 4 8 8 7 4 6 4 9 6 0 0 2 9 3 7 2 4 6 7 2 8 8 4 1 9 4 8 4 1 4 3 4 6 7 0 2 1 9 2 6 4 0 0 1 9 3 1 2 9 6 2 8 9 7 3 4 9 2 4 0 0 5 3 2 0 4 7 7 2 4 5 4 4 0 0 2 7 6 1 1 5 7 9 4 9 4 8 3 7 6 4 1 6 6 8 0 2 7 7 6 3 2 6 1 4 4 0 0 1 4 3 5 3 2 6 4 1 9 0 2 6 5 2 6 7 1 4 5 4 2 3 7 8 2 1 5 0 1 4 4 0 2 5 1 8 3 1 2 3 1 7 9 8 1 8 0 1 3 1 3 5 8 4 7 4 7 6 8 8 7 5 5 2 0 0 8 9 6 5 4 0 2 2 5 6 9 8 2 5 0 9 2 0 7 9 5 2 3 9 2 4 5 4 1 4 4 0 0 2 2 9 7 2 7 3 8 6 4 3 1 0 4 7 2 6 7 3 7 3 7 3 6 8 8 0 2 4 2 6 8 8 0 0 4 7 2 5 8 9 2 2 0 1 8 5 8 7 9 6 3 5 1 7 2 2 2 7 3 2 6 9 3 5 0 4 0 0 2 1 4 4 1 3 9 7 1 2 1 5 6 6 9 3 2 8 8 7 2 7 5 2 9 3 3 4 7 1 5 1 8 7 2 0 2 1 0 9 3 6 1 6 4 1 3 1 7 4 6 2 7 6 1 8 6 6 2 8 2 9 4 7 0 5 1 5 2 0 0 2 5 9 2 6 3 0 1 7 5 4 1 7 7 6 3 3 4 7 3 8 1 4 7 9 4 9 4 6 4 7 8 0 8 0 0 7 9 9 3 6 1 6 3 1 9 5 8 8 4 3 5 8 4 8 4 0 1 3 5 1 3 2 3 1 5 6 4 8 0 0 2 2 0 7 1 0 7 3 3 1 9 1 6 6 0 9 4 7 4 2 5 4 0 3 5 0 1 1 5 5 4 5 0 8 8 0 0 2 5 7 7 3 3 5 6 8 6 0 7 3 3 6 2 3 4 6 2 7 2 4 3 5 6 9 9 3 4 4 9 9 8 4 0 2 6 1 6 3 1 9 4 0 3 1 9 1 4 5 6 2 1 3 2 3 9 0 6 0 7 1 0 7 1 2 9 3 4 4 0 0 7 0 8 1 1 1 6 5 4 7 3 0 6 0 9 2 6 6 2 7 4 6 6 5 4 9 7 4 1 4 8 6 0 8 0 0 2 1 5 6 3 7 4 6 5 7 0 8 6 3 4 2 8 7 9 6 3 5 6 5 5 2 9 7 3 4 5 7 8 1 7 6 0 0 1 6 5 9 4 8 6 1 5 6 8 3 4 6 5 9 1 3 0 8 2 7 3 6 2 3 3 9 1 7 9 7 2 4 8 0 0 2 3 3 8 5 3 5 1 7 5 9 9 4 2 7 0 4 6 2 6 8 8 7 8 1 9 1 7 1 9 2 6 6 3 8 5 9 2 3 3 1 8 9 7 2 3 1 3 6 6 9 3 1 8 2 6 1 6 5 4 7 2 4 6 7 8 3 5 9 4 4 9 6 0 0 2 6 2 5 4 9 8 6 2 8 3 4 5 3 7 1 5 1 8 5 4 2 6 2 1 1 8 9 3 8 3 1 2 7 0 4 0 0 5 6 6 4 8 9 3 2 3 7 8 4 4 8 7 4 1 3 0 1 9 7 3 2 3 9 7 9 3 1 8 8 8 6 4 0 0 2 9 8 6 1 1 1 0 4 5 1 0 6 3 2 9 9 4 1 1 8 2 4 9 7 1 3 7 1 4 0 6 9 5 0 4 0 0 8 2 4 7 4 7 4 1 9 5 4 3 4 7 5 9 5 0 8 0 7 1 7 9 4 2 3 7 9 0 3 9 9 4 8 8 0 2 1 3 2 5 4 8 6 9 2 4 2 6 6 3 0 0 6 3 5 2 2 5 8 2 4 0 7 3 9 4 8 8 5 6 3 2 0 0 1 0 2 3 1 8 2 8 8 8 9 0 7 3 1 9 7 8 8 5 9 5 3 7 2 9 6 9 3 6 4 0 2 9 4 4 0 0 2 1 5 1 7 1 3 3 2 4 9 0 6 9 4 7 4 1 6 9 2 9 6 5 8 7 5 0 6 2 9 8 3 8 8 4 8 0 0 1 0 7 9 9 9 3 1 6 0 3 5 4 5 4 0 9 3 4 0 7 5 5 3 6 8 6 8 8 9 0 3 7 8 2 4 0 0 2 1 4 7 5 9 9 0 6 5 2 4 8 4 5 3 9 2 7 6 5 6 9 9 0 0 3 8 7 4 8 3 5 1 6 9 2 8 0 9 6 7 8 6 2 7 2 2 9 4 0 6 8 1 4 9 2 8 3 2 7 2 1 5 6 5 5 6 2 9 6 1 9 2 0 0 2 1 2 1 7 6 3 3 7 4 8 2 1 5 6 9 6 0 7 1 6 2 8 2 6 2 6 1 4 7 4 0 5 0 0 4 8 0 0 7 3 4 4 4 5 7 5 2 8 9 2 0 0 7 1 5 4 3 1 5 4 5 9 9 8 9 8 4 3 4 7 6 4 8 0 0 2 8 4 9 2 0 2 9 0 1 7 8 1 3 8 3 2 7 2 1 7 7 2 5 0 6 1 3 2 5 6 5 1 9 6 8 0 0 4 7 0 3 2 7 7 6 0 9 8 6 6 1 2 2 7 3 8 2 1 2 4 6 4 9 3 4 9 5 9 1 8 5 9 2 0 2 4 9 8 8 3 2 4 7 3 7 7 3 6 7 9 6 8 4 3 5 5 8 6 7 4 9 3 1 0 1 7 3 1 8 4 0 0 2 5 3 1 3 8 8 6 7 2 8 8 1 3 5 9 5 9 2 2 5 3 6 5 5 9 3 5 1 4 3 1 1 6 8 0 0 2 2 4 5 6 9 3 6 0 6 4 8 5 5 4 3 7 2 5 1 3 0 5 0 1 8 9 9 5 8 7 4 2 0 1 6 0 0 1 1 3 9 4 4 8 6 0 9 7 8 8 0 2 8 8 7 0 1 7 0 4 4 3 5 9 2 2 8 9 4 8 4 8 0 0 2 1 0 0 9 2 2 5 9 1 1 5 2 6 5 3 9 8 5 6 4 3 6 6 7 8 6 1 0 3 1 3 5 4 3 6 8 0 4 2 6 4 3 3 4 8 3 7 4 3 6 0 8 3 9 0 0 4 3 6 6 7 0 1 8 4 4 2 3 4 2 4 0 0 2 3 4 3 5 1 5 8 6 1 9 0 4 5 7 3 4 2 5 3 1 2 9 5 3 9 8 7 0 7 8 5 5 3 6 0 0 1 3 1 7 5 9 5 0 8 6 7 5 7 2 6 7 9 3 2 7 0 7 2 2 0 7 7 2 3 5 6 0 9 6 0 0 2 9 6 1 4 8 8 3 0 6 5 5 2 6 0 0 9 2 3 8 6 7 4 3 1 3 7 4 4 2 2 0 1 6 0 0 3 3 3 3 1 5 9 4 6 2 7 1 5 6 8 3 2 0 2 7 4 0 4 2 8 7 6 4 6 6 2 9 8 8 8 2 2 1 9 2 8 6 8 0 6 7 5 7 6 1 0 7 3 7 0 2 2 3 9 6 6 2 9 2 5 4 1 4 4 0 0 6 8 3 4 9 1 3 4 5 7 3 8 0 0 7 4 9 2 0 1 7 8 5 9 6 2 3 6 4 9 2 8 0 0 2 4 0 3 0 8 4 6 3 9 7 9 4 2 0 9 5 4 6 5 7 4 6 3 5 1 6 2 6 6 4 9 6 0 0 1 1 2 2 5 1 4 1 8 6 7 6 8 6 8 4 8 1 3 2 4 5 8 1 9 4 4 0 3 3 2 8 0 0 2 5 8 9 3 1 9 9 4 8 0 5 3 5 5 9 5 2 6 9 5 4 0 5 5 2 0 6 1 7 4 7 2 0 1 4 5 5 1 1 0 9 8 2 8 4 8 2 9 5 1 2 8 2 8 1 6 1 7 7 9 3 0 2 4 0 0 2 6 7 4 3 1 9 7 2 3 7 5 8 9 6 6 0 3 5 0 5 7 3 3 5 0 7 4 8 1 6 0 0 1 4 6 2 3 8 0 1 2 3 8 1 4 6 2 5 1 3 6 2 6 8 9 1 9 4 3 9 3 6 0 0 2 5 9 1 9 1 5 7 6 4 4 0 1 1 5 7 7 9 3 2 5 1 7 0 5 4 8 7 3 6 0 0 1 1 1 4 1 9 4 3 8 0 0 4 9 2 3 8 1 9 9 0 6 2 0 3 3 8 5 8 5 6 0 2 3 8 8 6 7 2 4 5 8 1 5 6 7 1 0 9 9 9 6 7 2 8 0 2 5 0 8 8 0 0 6 2 5 4 4 9 9 3 2 6 6 5 9 7 1 7 2 3 6 1 1 4 0 6 3 3 6 0 0 2 1 8 4 7 9 2 0 2 5 5 6 0 4 0 0 7 3 6 5 2 1 5 5 1 8 7 2 0 0 2 4 9 1 5 7 7 8 7 2 7 2 4 5 0 4 3 1 2 6 5 0 1 3 7 6 0 0 2 6 0 9 0 5 2 3 6 8 8 8 8 2 1 2 1 6 5 3 1 4 4 7 8 0 8 0 6 6 9 2 8 8 3 1 7 4 5 9 5 7 3 8 0 8 0 3 7 8 8 8 0 0 2 1 3 0 9 4 7 7 1 4 2 8 5 5 6 8 7 8 8 5 2 9 1 5 2 0 0 1 1 2 6 4 3 1 9 5 0 8 4 3 6 0 2 4 8 1 9 7 1 2 0 0 2 1 6 7 7 6 6 4 6 0 7 6 3 9 4 0 7 9 5 1 8 7 2 0 0 1 0 5 9 5 7 7 6 4 6 9 3 0 1 5 2 3 9 0 6 5 6 0 2 1 1 0 3 7 2 6 7 1 5 5 5 2 2 4 2 0 7 3 6 0 0 4 5 5 1 4 5 0 3 7 3 4 1 1 3 0 7 5 2 0 0 2 2 7 8 6 6 0 2 2 6 9 4 3 5 4 9 4 4 0 0 5 6 2 9 4 9 9 5 3 4 2 1 3 1 2 0 0 2 1 1 2 5 8 9 9 9 0 6 8 4 2 6 2 4 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 1 0 0
( 1 + 2 ) 1 0 0 = ( i − 1 1 0 0 ) ( 2 ) i − 1 ( i 1 0 0 ) ( 2 ) = 1 0 0 ( 1 0 1 − i ) ! ( i − 1 ) ! = ( 1 0 0 − i ) i ! 1 0 0 ! = i 1 0 1 − i 2 > i = 1 0 1 2 − i 2 > i = 1 + 2 i ( 1 + 2 ) < 1 + 2 1 0 1 2 ⋅ 1 − 2 1 − 2 = − 1 0 1 2 + 2 0 2 ≈ 5 9 . 1 6 i = 5 9
Problem Loading...
Note Loading...
Set Loading...
The numbering can be done in different ways, so the question is somewhat ambiguous, but I use the following: definition for the summands in Newton's binomium ( a + b ) n = ∑ i = 0 n ( i n ) a n − i b i .
So the i t h summand is s i = ( i n ) a n − i b i = i ! ( n − i ) ! n ! a n − i b i
The ratio of two subsequent summands is s i − 1 s i = ( i − 1 ) ! ( n − i + 1 ) ! n ! a n − i + 1 b i − 1 i ! ( n − i ) ! n ! a n − i b i = i a ( n − i + 1 ) b .
If this quantity exceeds 1, then that means that s i > s i − 1 and we find the maximum by setting ( n − i + 1 ) b = i a or i = a + b ( n + 1 ) b = 1 + 2 1 0 1 2 = 5 9 . 1 6 . . .
So the i for which the value is the largest it is either 59 or 60. Checking s 5 9 s 6 0 = 6 0 4 1 2 < 1 shows that s 5 9 is the largest so that maximum is at i = 5 9 .