A Combi Problem by Michael Huang

Consider the binomial expansion ( 1 + 2 ) 100 = 1 = x 0 + ( 100 1 ) 2 = x 1 + ( 100 2 ) ( 2 ) 2 = x 2 + + ( 100 99 ) ( 2 ) 99 = x 99 + ( 2 ) 100 = x 100 . (1 + \sqrt2 )^{100} = \underbrace1_{=x_0} + \underbrace{\binom{100}1 \sqrt2}_{=x_1} + \underbrace{\binom{100}2 (\sqrt2)^2}_{=x_2} + \cdots + \underbrace{\binom{100}{99} (\sqrt2)^{99} }_{=x_{99}} + \underbrace{ (\sqrt2)^{100} }_{=x_{100}}.

Find the value of n n such that x n x_n is maximized.


The answer is 59.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

K T
May 29, 2019

The numbering can be done in different ways, so the question is somewhat ambiguous, but I use the following: definition for the summands in Newton's binomium ( a + b ) n = i = 0 n ( n i ) a n i b i (a+b)^n=\sum_{i=0}^n { {n\choose i} a^{n-i} b^i} .

So the i t h i^{th} summand is s i = ( n i ) a n i b i = n ! i ! ( n i ) ! a n i b i s_i={n\choose i} a^{n-i} b^i=\frac{n!}{i!(n-i)!} a^{n-i} b^i

The ratio of two subsequent summands is s i s i 1 = n ! i ! ( n i ) ! a n i b i n ! ( i 1 ) ! ( n i + 1 ) ! a n i + 1 b i 1 = ( n i + 1 ) b i a \frac{s_i}{s_{i-1}} = \frac{\frac{n!}{i!(n-i)!} a^{n-i} b^i}{\frac{n!}{(i-1)!(n-i+1)!} a^{n-i+1} b^{i-1} }=\frac{(n-i+1)b}{ia} .

If this quantity exceeds 1, then that means that s i > s i 1 s_i \gt s_{i-1} and we find the maximum by setting ( n i + 1 ) b = i a (n-i+1)b=ia or i = ( n + 1 ) b a + b = 101 2 1 + 2 = 59.16... i=\frac{(n+1)b}{a+b}=\frac{101 \sqrt{2}}{1+\sqrt{2}}=59.16...

So the i for which the value is the largest it is either 59 or 60. Checking s 60 s 59 = 41 2 60 < 1 \frac{s_{60}}{s_{59}} =\frac{41\sqrt{2}}{60}\lt 1 shows that s 59 s_{59} is the largest so that maximum is at i = 59 i=\boxed{59} .

t = List@@Expand [ ( a + b ) 100 ] /. { a 1 , b 2 } ; Position [ t , max ( t ) ] [ [ 1 , 1 ] ] 1 59 t=\text{List}\text{@@}\text{Expand}\left[(a+b)^{100}\right]\text{/.}\, \left\{a\to 1,b\to \sqrt{2}\right\}; \text{Position}[t,\max (t)][[1,1]]-1 \Rightarrow 59

The largest magnitude summand is 10799931603545409340755368688903782400 2 10799931603545409340755368688903782400 \sqrt{2} . The list of values is

1 0 100 2 1 9900 2 323400 2 3 15684900 4 301150080 2 5 9536419200 6 128060486400 2 7 2977406308800 8 30435708934400 2 9 553929902606080 10 4532153748595200 2 11 67226947270828800 12 455074719987148800 2 13 5655928662697420800 14 32427324332798545920 2 15 344540321035984550400 16 1702434527471923660800 2 17 15700229531129962649600 18 67758885344876680908800 2 19 548846971293501115361280 20 2090845604927623296614400 2 21 15016072980843840039321600 22 50924073587209544481177600 2 23 326762805517927910420889600 24 993358928774500847679504384 2 25 5730916896775966428920217600 26 15706957420793389471855411200 2 27 81900563694136959388960358400 28 203339330550960726758798131200 2 29 962472831274547439991644487680 30 2173325748039300670948874649600 2 31 9372467288419484143467021926400 32 19312962897349240053204772454400 2 33 76115794948376416680277632614400 34 143532641902652671454237821501440 2 35 518312317981801313584747688755200 36 896540225698250920795239245414400 2 37 2972738643104726737373688024268800 38 4725892201858796351722273269350400 2 39 14413971215669328872752933471518720 40 21093616413174627618662829470515200 2 41 59263017541776334738147949464780800 42 79936163195884358484013513231564800 2 43 207107331916609474254035011554508800 44 257733568607336234627243569934499840 2 45 616319403191456213239060710712934400 46 708111654730609266274665497414860800 2 47 1563746570863428796356552973457817600 48 1659486156834659130827362339179724800 2 49 3385351759942704626887819171926638592 50 3318972313669318261654724678359449600 2 51 6254986283453715185426211893831270400 52 5664893237844874130197323979318886400 2 53 9861110451063299411824971371406950400 54 8247474195434759508071794237903994880 2 55 13254869242663006352258240739488563200 56 10231828889073197885953729693640294400 2 57 15171332490694741692965875062983884800 58 10799931603545409340755368688903782400 2 59 14759906524845392765699003874835169280 60 9678627229406814928327215655629619200 2 61 12176337482156960716282626147405004800 62 7344457528920071543154599898434764800 2 63 8492029017813832721772506132565196800 64 4703277609866122738212464934959185920 2 65 4988324737736796843558674931017318400 66 2531388672881359592253655935143116800 2 67 2456936064855437251305018995874201600 68 1139448609788028870170443592289484800 2 69 1009225911526539856436678610313543680 70 426433483743608390043667018442342400 2 71 343515861904573425312953987078553600 72 131759508675726793270722077235609600 2 73 96148830655260092386743137442201600 74 33331594627156832027404287646629888 2 75 21928680675761073702239662925414400 76 6834913457380074920178596236492800 2 77 4030846397942095465746351626649600 78 1122514186768684813245819440332800 2 79 589319948053559526954055206174720 80 145511098284829512828161779302400 2 81 67431972375896603505733507481600 82 14623801238146251362689194393600 2 83 5919157644011577932517054873600 84 1114194380049238199062033858560 2 85 388672458156710999672802508800 86 62544993266597172361140633600 2 87 18479202556040073652155187200 88 2491577872724504312650137600 2 89 609052368888212165314478080 90 66928831745957380803788800 2 91 13094771428556878852915200 92 1126431950843602481971200 2 93 167766460763940795187200 94 10595776469301523906560 2 95 1103726715552242073600 96 45514503734113075200 2 97 2786602269435494400 98 56294995342131200 2 99 1125899906842624 100 \begin{array}{rr} 1 & 0 \\ 100 \sqrt{2} & 1 \\ 9900 & 2 \\ 323400 \sqrt{2} & 3 \\ 15684900 & 4 \\ 301150080 \sqrt{2} & 5 \\ 9536419200 & 6 \\ 128060486400 \sqrt{2} & 7 \\ 2977406308800 & 8 \\ 30435708934400 \sqrt{2} & 9 \\ 553929902606080 & 10 \\ 4532153748595200 \sqrt{2} & 11 \\ 67226947270828800 & 12 \\ 455074719987148800 \sqrt{2} & 13 \\ 5655928662697420800 & 14 \\ 32427324332798545920 \sqrt{2} & 15 \\ 344540321035984550400 & 16 \\ 1702434527471923660800 \sqrt{2} & 17 \\ 15700229531129962649600 & 18 \\ 67758885344876680908800 \sqrt{2} & 19 \\ 548846971293501115361280 & 20 \\ 2090845604927623296614400 \sqrt{2} & 21 \\ 15016072980843840039321600 & 22 \\ 50924073587209544481177600 \sqrt{2} & 23 \\ 326762805517927910420889600 & 24 \\ 993358928774500847679504384 \sqrt{2} & 25 \\ 5730916896775966428920217600 & 26 \\ 15706957420793389471855411200 \sqrt{2} & 27 \\ 81900563694136959388960358400 & 28 \\ 203339330550960726758798131200 \sqrt{2} & 29 \\ 962472831274547439991644487680 & 30 \\ 2173325748039300670948874649600 \sqrt{2} & 31 \\ 9372467288419484143467021926400 & 32 \\ 19312962897349240053204772454400 \sqrt{2} & 33 \\ 76115794948376416680277632614400 & 34 \\ 143532641902652671454237821501440 \sqrt{2} & 35 \\ 518312317981801313584747688755200 & 36 \\ 896540225698250920795239245414400 \sqrt{2} & 37 \\ 2972738643104726737373688024268800 & 38 \\ 4725892201858796351722273269350400 \sqrt{2} & 39 \\ 14413971215669328872752933471518720 & 40 \\ 21093616413174627618662829470515200 \sqrt{2} & 41 \\ 59263017541776334738147949464780800 & 42 \\ 79936163195884358484013513231564800 \sqrt{2} & 43 \\ 207107331916609474254035011554508800 & 44 \\ 257733568607336234627243569934499840 \sqrt{2} & 45 \\ 616319403191456213239060710712934400 & 46 \\ 708111654730609266274665497414860800 \sqrt{2} & 47 \\ 1563746570863428796356552973457817600 & 48 \\ 1659486156834659130827362339179724800 \sqrt{2} & 49 \\ 3385351759942704626887819171926638592 & 50 \\ 3318972313669318261654724678359449600 \sqrt{2} & 51 \\ 6254986283453715185426211893831270400 & 52 \\ 5664893237844874130197323979318886400 \sqrt{2} & 53 \\ 9861110451063299411824971371406950400 & 54 \\ 8247474195434759508071794237903994880 \sqrt{2} & 55 \\ 13254869242663006352258240739488563200 & 56 \\ 10231828889073197885953729693640294400 \sqrt{2} & 57 \\ 15171332490694741692965875062983884800 & 58 \\ 10799931603545409340755368688903782400 \sqrt{2} & 59 \\ 14759906524845392765699003874835169280 & 60 \\ 9678627229406814928327215655629619200 \sqrt{2} & 61 \\ 12176337482156960716282626147405004800 & 62 \\ 7344457528920071543154599898434764800 \sqrt{2} & 63 \\ 8492029017813832721772506132565196800 & 64 \\ 4703277609866122738212464934959185920 \sqrt{2} & 65 \\ 4988324737736796843558674931017318400 & 66 \\ 2531388672881359592253655935143116800 \sqrt{2} & 67 \\ 2456936064855437251305018995874201600 & 68 \\ 1139448609788028870170443592289484800 \sqrt{2} & 69 \\ 1009225911526539856436678610313543680 & 70 \\ 426433483743608390043667018442342400 \sqrt{2} & 71 \\ 343515861904573425312953987078553600 & 72 \\ 131759508675726793270722077235609600 \sqrt{2} & 73 \\ 96148830655260092386743137442201600 & 74 \\ 33331594627156832027404287646629888 \sqrt{2} & 75 \\ 21928680675761073702239662925414400 & 76 \\ 6834913457380074920178596236492800 \sqrt{2} & 77 \\ 4030846397942095465746351626649600 & 78 \\ 1122514186768684813245819440332800 \sqrt{2} & 79 \\ 589319948053559526954055206174720 & 80 \\ 145511098284829512828161779302400 \sqrt{2} & 81 \\ 67431972375896603505733507481600 & 82 \\ 14623801238146251362689194393600 \sqrt{2} & 83 \\ 5919157644011577932517054873600 & 84 \\ 1114194380049238199062033858560 \sqrt{2} & 85 \\ 388672458156710999672802508800 & 86 \\ 62544993266597172361140633600 \sqrt{2} & 87 \\ 18479202556040073652155187200 & 88 \\ 2491577872724504312650137600 \sqrt{2} & 89 \\ 609052368888212165314478080 & 90 \\ 66928831745957380803788800 \sqrt{2} & 91 \\ 13094771428556878852915200 & 92 \\ 1126431950843602481971200 \sqrt{2} & 93 \\ 167766460763940795187200 & 94 \\ 10595776469301523906560 \sqrt{2} & 95 \\ 1103726715552242073600 & 96 \\ 45514503734113075200 \sqrt{2} & 97 \\ 2786602269435494400 & 98 \\ 56294995342131200 \sqrt{2} & 99 \\ 1125899906842624 & 100 \\ \end{array}

Jane Maleza
May 26, 2019

( 1 + 2 ) 100 = ( 100 i ) ( 2 ) ( 100 i 1 ) ( 2 ) i 1 (1+\sqrt{2})^{100} = \frac{{{100}\choose{i}}(\sqrt{2})}{{{100}\choose{i-1}}(\sqrt{2})^{i-1}} = ( 101 i ) ! ( i 1 ) ! 100 \frac{(101-i)!(i-1)!}{100} = 100 ! ( 100 i ) i ! \frac{100!}{(100-i)i!} = 101 i i 2 > i \frac{101-i}{i}\sqrt{2}>i = 101 2 i 2 > i 101\sqrt{2}-i\sqrt{2}>i = i ( 1 + 2 ) 1 + 2 < 101 2 1 + 2 1 2 1 2 \frac{i(1+\sqrt{2})}{1+\sqrt{2}}<\frac{101\sqrt{2}}{1+\sqrt{2}}\cdot\frac{1-\sqrt{2}}{1-\sqrt{2}} = 101 2 + 202 59.16 -101\sqrt{2}+202\approx{59.16} i = 59 \boxed{i=59}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...