A probability problem by Sabhrant Sachan

Find the number of ways in which the sum of upper faces of four distinct dices can be six.

12 10 4 7 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
May 6, 2016

According to the Question : The Sum of Outcomes must be six The Minimum outcome is 1 and Max. Outcome should be 3 [For condition to be valid] Using the Help of Generating functions : We need to find the co-efficient of x 6 in ( x 1 + x 2 + x 3 ) 4 x 4 ( 1 x 3 ) 4 ( 1 x ) 4 co-efficient of x 2 in ( 1 x 3 ) 4 ( 1 x ) 4 co-efficient of x 2 in ( 1 4 x 3 + 6 x 6 4 x 9 + x 12 ) ( 1 + 4 x + 10 x 2 + 20 x 3 . . . ) Co-efficient of x 2 is 10 \text {According to the Question : The Sum of Outcomes must be six } \\ \text{The Minimum outcome is 1 and Max. Outcome should be 3 [For condition to be valid] } \\ \text {Using the Help of Generating functions : } \\ \text{We need to find the co-efficient of } x^6 \text{ in } (x^1+x^2+x^3)^4 \\ \implies x^4\dfrac{(1-x^3)^4}{(1-x)^4} \\ \implies \text{co-efficient of } x^2 \text { in } (1-x^3)^4(1-x)^{-4} \\ \implies \text{co-efficient of } x^2 \text { in } (1-4x^3+6x^6-4x^9+x^{12})(1+4x+10x^2+20x^3...\infty) \\ \text {Co-efficient of } x^2 \text { is } \color{#3D99F6}{\boxed{10}}

There are two combinations in which this is possible that is (1,1,1,3) which can be arranged in four ways and (1,1,2,2) which can be arranged in 6 ways and total number of cases is 6⁴ so probability is 10/6⁴

Paradox Gaming - 1 year, 4 months ago
Rajdeep Brahma
Mar 23, 2017

let the numbers be p , q , r , s. p , q , r , s>=1 p + q + r +s =6 introduce a = p-1,b=q-1,c=r-1,d=s-1 then , a+b+c+d=2 no. of solutions = (2+4-1)!/(4-1)!=5!/3!=10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...