A number theory problem by Zarak K

How many numbers can be expressed as the sum of two or more distinct elements of the set { 0 , 1 , 2 , 4 , 8 , 16 } \{ 0, 1, 2, 4, 8, 16 \} ?

Source: MathCounts 2002 National Countdown.


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kunal Verma
Feb 19, 2015

S o f i r s t o f , w e c a n s i m p l y t a k e t w o n u m b e r s a t a t i m e a n d i t l l a l l g i v e d i f f e r e n t s o l u t i o n s . N o w h e r e s t h e t r i c k y p a r t . F r o m t h e s e c o n d s t e p , w e d i s c l u d e 0 f r o m t h e s e t s i n c e i t w i l l g i v e t h e s a m e r e s u l t a s t h e p r e v i o u s s t e p . S o n o w w e t a k e 3 n u m b e r s a t a t i m e , t h e n 4 a t t i m e a n d f i n a l l y 5 a t a t i m e . T h e r e f o r e w e h a v e : 2 6 C + 3 5 C + 4 5 C + 5 5 C = 15 + 10 + 5 + 1 = 31 N O T E : W e o b s e r v e t h a t s o l u t i o n i n a l l r i s d i f f e r e n t b e c a u s e s u m o f a n y n u m b e r s i s n o t e q u a l t o a n o t h e r n u m b e r . So\quad first\quad of,\quad we\quad can\quad simply\quad take\quad two\quad numbers\quad at\quad a\quad time\quad \\ and\quad it'll\quad all\quad give\quad different\quad solutions.\\ \\ Now\quad here's\quad the\quad tricky\quad part.\quad From\quad the\quad second\quad step,\quad \\ we\quad disclude\quad 0\quad from\quad the\quad set\quad since\quad it\quad will\quad give\quad \\ the\quad same\quad result\quad as\quad the\quad previous\quad step.\\ \\ So\quad now\quad we\quad take\quad 3\quad numbers\quad at\quad a\quad time,\quad then\quad 4\quad at\quad time\\ \quad and\quad finally\quad 5\quad at\quad a\quad time.\\ \\ Therefore\quad we\quad have:-\quad \\ \\ \quad \quad \quad \quad \quad \quad \quad _{ 2 }^{ 6 }{ C }\quad +\quad _{ 3 }^{ 5 }{ C }\quad +\quad _{ 4 }^{ 5 }{ C }\quad +\quad _{ 5 }^{ 5 }{ C }\\ =\quad \quad 15\quad +\quad 10\quad +\quad 5\quad +\quad 1\quad \\ =\quad \boxed { 31 } \\ \\ NOTE:-\quad We\quad observe\quad that\quad solution\quad in\quad all\quad r\quad \\ is\quad different\quad because\quad sum\quad of\quad any\quad \\ numbers\quad is\quad not\quad equal\quad to\quad another\quad number.\quad \quad \quad \quad \quad \\

Ch Nikhil
Nov 29, 2014

First see that all the numbers in the set are powers of 2 . we know that every number can be represented as sum of powers of 2 . Therefore the smallest and the largest number that can be formed are 1 and 1+2+4+8+16 that is 1 and 31 . Therefore number of solutions is 31 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...