'A' comes first

Calculus Level 2

If 1 e 2 x + e 2 x d x = A 6 t a n 1 ( e 2 x ) + C \displaystyle\int\dfrac{1}{e^{-2x}+e^{2x}}dx=\dfrac{A}{6}tan^{-1}(e^{2x})+C ,then what is the value of A ? A?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Oct 18, 2017

I = 1 e 2 x + e 2 x d x = 1 2 2 e 2 x ( e 2 x ) 2 + 1 d x Substitute e 2 x = u 2 e 2 x d x = d u = 1 2 arctan ( e 2 x ) + C \begin{aligned} \displaystyle I &= \int \dfrac{1}{e^{-2x} + e^{2x}} \,dx \\ \displaystyle &= \dfrac 12 \cdot \int \dfrac{2e^{2x}}{ {\left( e^{2x} \right)}^2 +1} \,dx & \small\color{#3D99F6}{\text{Substitute } e^{2x} = u \implies 2e^{2x} \,dx = \,du} \\ \displaystyle &= \dfrac 12 \cdot \arctan \left( e^{2x} \right) + C \end{aligned}

1 2 = 3 6 A = 3 \therefore \dfrac 12 = \dfrac 36 \implies \boxed{A=3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...