A Common tangent problem

Level 2

If A B \overleftrightarrow{AB} and D E \overleftrightarrow{DE} are tangent to the curves y = x y = \sqrt{|x|} and y = x 2 y = -x^2 at points A , B , D A,B,D and E E find the area of the trapezoid B D A E BDAE above.


The answer is 0.5625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 6, 2018

Using the symmetry about the y y axis let f ( x ) = x 2 { f(x) = -x^2 } and g ( x ) = x { g(x) = \sqrt{x} \implies }

d d x ( f ( x ) ) x = a = 2 a \dfrac{d}{dx}(f(x))|_{x = a} = -2a and d d x ( g ( x ) ) x = b = 1 2 b \dfrac{d}{dx}(g(x))|_{x = b} = \dfrac{1}{2 \sqrt{b}} \implies

2 a = 1 2 b a = 1 4 b -2a = \dfrac{1}{2 \sqrt{b}} \implies a = -\dfrac{1}{4 \sqrt{b}}

B : ( a , a 2 ) = ( 1 4 b , 1 16 b ) B: (a,-a^2) = (-\dfrac{1}{4 \sqrt{b}} , -\dfrac{1}{16 b}) and A : ( b , b ) A: (b, \sqrt{b} ) \implies

slope m = 1 2 b = 1 4 b ( 16 b 3 2 + 1 4 b 3 2 + 1 ) m = \dfrac{1}{2 \sqrt{b}} = \dfrac{1}{4 \sqrt{b}} (\dfrac{16 b^\frac{3}{2} + 1}{4 b^\frac{3}{2} + 1}) \implies

16 b 3 2 + 1 = 8 b 3 2 + 2 8 b 3 2 = 1 b = 1 4 16 b^\frac{3}{2} + 1 = 8 b^\frac{3}{2} + 2 \implies 8 b^\frac{3}{2} = 1 \implies b = \dfrac{1}{4}

\implies slope m = 1 m = 1 and a = 1 2 a = -\dfrac{1}{2}

Using B : ( 1 2 , 1 4 ) y = x + 1 4 B: (-\dfrac{1}{2},-\frac{1}{4}) \implies y = x + \dfrac{1}{4}

y = x + 1 4 y = x + \dfrac{1}{4} is tangent to g ( x ) g(x) at A : ( 1 4 , 1 2 ) A: (\dfrac{1}{4} , \dfrac{1}{2}) and f ( x ) f(x) at B : ( 1 2 , 1 4 ) B: (-\dfrac{1}{2},-\dfrac{1}{4})

Using the symmetry about the y y axis B : ( 1 2 , 1 4 ) E : ( 1 2 , 1 4 ) B:(\dfrac{-1}{2},\dfrac{-1}{4}) \rightarrow E:(\dfrac{1}{2},\dfrac{-1}{4}) and A : ( 1 4 , 1 2 ) D : ( 1 4 , 1 2 ) A:(\dfrac{1}{4},\dfrac{1}{2}) \rightarrow D:(\dfrac{-1}{4},\dfrac{1}{2}) .

Using points E : ( 1 2 , 1 4 ) E:(\dfrac{1}{2},\dfrac{-1}{4}) and D : ( 1 4 , 1 2 ) y = 1 4 x D:(\dfrac{-1}{4},\dfrac{1}{2}) \implies y = \dfrac{1}{4} - x and B E = 1 , A D = 1 2 BE = 1, AD = \dfrac{1}{2} and the height of the trapezoid D F = 3 4 DF = \dfrac{3}{4} \implies the area of the trapezoid A B D A E = 1 2 ( 3 4 ) ( 3 2 ) = 9 16 = 0.5625 A_{BDAE} = \dfrac{1}{2}(\dfrac{3}{4})(\dfrac{3}{2}) = \dfrac{9}{16} = \boxed{0.5625} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...