A complex equation system

Algebra Level 5

{ 9 ( x x + y 3 + z 3 ) 3 = x + y + z x 2 + y = 2 z y + z 2 = 1 x + 2 \begin{cases} \sqrt [ 3 ]{ 9\left( x\sqrt { x } +{ y }^{ 3 }+{ z }^{ 3 } \right) } =x+y+z \\ { x }^{ 2 }+\sqrt { y } =2z \\ \sqrt { y } +{ z }^{ 2 }=\sqrt { 1-x } +2 \end{cases}

How many real triplets ( x , y , z ) (x,y,z) satisfy the system of equations above?

2 1 6 Infinitely many

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 23, 2017

We first notice that these below inequalities hold true with non-negative ( a , b , c ) (a,b,c) :

4 ( a 3 + b 3 ) ( a + b ) 3 , 4 ( b 3 + c 3 ) ( b + c ) 3 , 4 ( c 3 + a 3 ) ( c + a ) 3 4\left( { a }^{ 3 }+{ b }^{ 3 } \right) \ge { \left( a+b \right) }^{ 3 },4\left( { b }^{ 3 }+{ c }^{ 3 } \right) \ge { \left( b+c \right) }^{ 3 },4\left( { c }^{ 3 }+{ a }^{ 3 } \right) \ge { \left( c+a \right) }^{ 3 }

4 ( a 3 + b 3 + c 3 ) ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 \Longrightarrow 4\left( { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } \right) \ge { \left( a+b \right) }^{ 3 }+{ \left( b+c \right) }^{ 3 }+{ \left( c+a \right) }^{ 3 }

From the above inequality and AM-GM inequality we then have

( a + b + c ) 3 = a 3 + b 3 + c 3 + 3 ( a + b ) ( b + c ) ( c + a ) a 3 + b 3 + c 3 + ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 9 ( a 3 + b 3 + c 3 ) ( ) { \left( a+b+c \right) }^{ 3 }={ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }+3\left( a+b \right) \left( b+c \right) \left( c+a \right) \le { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }+{ \left( a+b \right) }^{ 3 }+{ \left( b+c \right) }^{ 3 }+{ \left( c+a \right) }^{ 3 }\le 9\left( { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } \right) \left( * \right)

"=" happens when a = b = c a=b=c .

Revert to the system of equation

{ 9 ( x x + y 3 + z 3 ) 3 = x + y + z ( 1 ) x 2 + y = 2 z ( 2 ) y + z 2 = 1 x + 2 ( 3 ) \begin{cases} \sqrt [ 3 ]{ 9\left( x\sqrt { x } +{ y }^{ 3 }+{ z }^{ 3 } \right) } =x+y+z \quad \left( 1 \right) \\ { x }^{ 2 }+\sqrt { y } =2z \quad \left( 2 \right) \\ \sqrt { y } +{ z }^{ 2 }=\sqrt { 1-x } +2 \quad \left( 3 \right) \end{cases}

We can easily see that x , y , z x,y,z satisfy 0 x 1 , y 0 , z 0 0\le x\le 1,y\ge 0,z\ge 0 . Therefore, x x = ( x ) 3 x 3 x\sqrt { x } ={ \left( \sqrt { x } \right) }^{ 3 }\ge { x }^{ 3 }

Now, apply the inequality ( ) \left( * \right)

9 ( x x + y 3 + z 3 ) 9 ( x 3 + y 3 + z 3 ) ( x + y + z ) 3 9\left( x\sqrt { x } +{ y }^{ 3 }+{ z }^{ 3 } \right) \ge 9\left( { x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 } \right) \ge { \left( x+y+z \right) }^{ 3 }\Longrightarrow LHS ( 1 ) \left( 1 \right)\ge RHS ( 1 ) \left( 1 \right)

{ x = y = z x = x x = y = z = 0 \Longrightarrow \begin{cases} x=y=z \\ \sqrt { x } =x \end{cases}\Longrightarrow x=y=z=0 or x = y = z = 1 x=y=z=1

But x = y = z = 0 x=y=z=0 does not satisfy equation ( 3 ) \left( 3 \right) .

Hence ( x , y , z ) = ( 1 , 1 , 1 ) \left( x,y,z \right) =\boxed { \left( 1,1,1 \right) } is the only real solution of the provided equation system.

By the way, the inequality that you worked out is the arithmetic mean-cubic mean case of the generalized mean theorem, so you didn't really have to derive it.

John Ross - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...