A Complex Infinite Trig Sum 2

Calculus Level 3

n = 1 ( 1 x ) n cos 60 n = n = 1 ( 1 x + 1 ) n cos 60 n \sum_{n=1}^\infty \left(\frac {1}{x}\right) ^ n\cos 60n = \sum_{n=1}^\infty \left(\frac {1}{x+1}\right) ^ n\cos 60n

The equation above is satisfied when x = a + b c x = \dfrac {a + \sqrt{b}}{c} , where a a , b b and c c are coprime positive integers and x > 0 x > 0 .

What is the value of a + b + c a + b + c ?

Note: This problem is in degrees.


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Sapiano
Sep 24, 2019

Let P = 1 + 1 x cos θ + 1 x 2 cos 2 θ + 1 x 3 cos 3 θ . . . P = 1 + \frac {1}{x} \cos \theta + \frac {1}{x^2} \cos 2 \theta + \frac {1}{x^3} \cos 3 \theta...

Let Q = 1 x sin θ + 1 x 2 sin 2 θ + 1 x 3 sin 3 θ Q = \frac {1}{x} \sin \theta + \frac {1}{x^2} \sin 2 \theta + \frac {1}{x^3} \sin 3 \theta

(Note that these two series converge)

P + i Q = 1 + 1 x ( cos θ + i sin θ ) + 1 x 2 ( cos 2 θ + i sin 2 θ ) + 1 x 3 ( cos 3 θ + i sin 3 θ ) . . . P + iQ = 1 + \frac {1}{x} (\cos \theta + i\sin\theta) + \frac {1}{x^2} (\cos 2 \theta + i\sin2\theta) + \frac {1}{x^3} (\cos 3 \theta + i\sin3\theta)...

Where i = 1 i = \sqrt{-1}

P + i Q = 1 + 1 x e i θ + 1 x 2 e i 2 θ + 1 x 3 e i 3 θ P + iQ = 1 + \frac {1}{x} e^{i \theta} + \frac {1}{x^2} e^{i 2\theta} + \frac {1}{x^3} e^{i 3\theta}

This is a geometric sequence with a common ratio of 1 x e i θ \frac {1}{x} e^{i \theta} .

So the converging series is equal to 1 1 1 x e i θ = x x e i θ = x ( x cos θ ) i sin θ \frac {1}{ 1 - \frac {1}{x}e^{i \theta}} = \frac {x}{ x -e^{i \theta}} = \frac {x}{( x -\cos \theta) - i\sin\theta}

Rationalising the denominator we get x 2 x cos θ + i x sin θ x 2 + 1 2 x cos θ \frac {x^2 - x\cos\theta + ix\sin\theta}{x^2 + 1 - 2x\cos\theta}

Taking the real part of the equation, P = x 2 x cos θ x 2 + 1 2 x cos θ P = \frac {x^2 - x\cos\theta}{x^2 + 1 - 2x\cos\theta} .

Substituting θ = 60 \theta = 60 : P = 2 x 2 x 2 x 2 2 x + 2 P = \frac {2x^2 - x}{2x^2 - 2x + 2} .

So 2 x 2 x 2 x 2 2 x + 2 1 \frac {2x^2 - x}{2x^2 - 2x + 2} - 1 = = 2 ( x + 1 ) 2 ( x + 1 ) 2 ( x + 1 ) 2 2 ( x + 1 ) + 2 1 \frac {2(x+1)^2 - (x+1)}{2(x+1)^2 - 2(x+1) + 2} - 1

Solving for x x we find that x 2 3 x 1 = 0 x^2 -3x -1 = 0

x = 3 + 13 2 x = \frac {3+\sqrt{13}}{2}

Therefore a + b + c = 18 a + b + c = \boxed{18}

How did you derive your expression for P + i Q P + iQ on line 4?

Chandler West - 1 year, 8 months ago

Does this help now?

Chris Sapiano - 1 year, 8 months ago

I believe that there is a mistake where you "rationalise the denominator". You have

x x cos θ i sin θ \frac{x}{x - \cos{\theta} - i \sin{\theta}}

Which when you rationalise the denominator turns into

x 2 x cos θ + i x sin θ x 2 + 1 2 x cos θ \frac{x^2 - x \cos{\theta} + i x \sin{\theta}}{x^2 + 1 - 2 x \cos{\theta}}

There is a missing factor of x x in one of the terms in the numerator in your work.

Chandler West - 1 year, 8 months ago

Sorry. That is a mistake in copying down my workings

Chris Sapiano - 1 year, 8 months ago

In the problem, there should be parentheses around the fractions. For example, "\left( \frac{1}{x} \right)^n" will produce ( 1 x ) n \left( \frac{1}{x} \right)^n .

Jon Haussmann - 1 year, 8 months ago

Using the fact c o s α = R e ( e i α ) cosα=Re(e^{iα}) (where i = ( 1 ) i=√(-1) ) and summing the series on each side (they are infinite G.P. series each) we get x 2 3 x 1 = 0 x^2-3x-1=0 . Solving this we get the positive value of x x equal to 3 + 13 2 \dfrac{3+√13}{2} . So a = 3 , b = 13 , c = 2 a=3, b=13, c=2 . Hence a + b + c = 3 + 13 + 2 = 18 a+b+c=3+13+2=18

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...