A Complex Infinite Trig Sum

Calculus Level 3

n = 1 cos ( n θ ) 2 n = n = 1 cos ( n θ ) 3 n \sum_{n=1}^\infty \frac {\cos (n \theta)}{2^n} = \sum_{n=1}^\infty \frac {\cos (n \theta)}{3^n}

The equation above holds true when cos θ = a b \cos \theta = \dfrac ab , where a a and b b are coprime positive integers. What is the value of a + b a + b ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 28, 2019

Let the infinite sum be:

S ( k ) = n = 1 cos ( n θ ) k n = n = 1 ( e i n θ ) k n = ( n = 1 e i n θ k n ) ( ) denotes the real part function. = ( e i θ k 1 1 e i θ k ) = ( 1 k e i θ 1 ) Euler’s formula: e i θ = cos θ + i sin θ = ( 1 k cos θ 1 i k sin θ ) Multiply up and down by k cos θ 1 + i k sin θ = ( k cos θ 1 + i k sin θ k 2 2 k cos θ + 1 ) = k cos θ 1 k 2 2 k cos θ + 1 Divide up and down by k cos θ 1 = 1 k 2 1 k cos θ 1 2 \begin{aligned} S(k) & = \sum_{n=1}^\infty \frac {\cos (n\theta)}{k^n} = \sum_{n=1}^\infty \frac {\Re \left(e^{in\theta}\right)}{k^n} = \Re \left(\sum_{n=1}^\infty \frac {e^{in\theta}}{k^n} \right) & \small \color{#3D99F6} \Re (\cdot) \text{ denotes the real part function.} \\ & = \Re \left(\frac {e^{i\theta}}k \cdot \frac 1{1-\frac {e^{i\theta}}k}\right) = \Re \left(\frac 1{ke^{-i\theta}-1}\right) & \small \color{#3D99F6} \text{Euler's formula: }e^{i\theta} = \cos \theta + i\sin \theta \\ & = \Re \left(\frac 1{k\cos \theta - 1 - ik\sin \theta}\right) & \small \color{#3D99F6} \text{Multiply up and down by }k\cos \theta - 1 + ik\sin \theta \\ & = \Re \left(\frac {k\cos \theta - 1 + ik\sin \theta}{k^2 - 2k\cos \theta + 1}\right) \\ & = \frac {k\cos \theta - 1}{k^2 - 2k\cos \theta + 1} & \small \color{#3D99F6} \text{Divide up and down by }k\cos \theta-1 \\ & = \frac 1{\frac {k^2-1}{k\cos \theta-1} - 2} \end{aligned}

Therefore,

S ( 2 ) = S ( 3 ) 1 S ( 2 ) = 1 S ( 3 ) 2 2 1 2 cos θ 1 2 = 3 2 1 3 cos θ 1 2 3 2 cos θ 1 = 8 3 cos θ 1 9 cos θ 3 = 16 cos θ 8 cos θ = 5 7 \begin{aligned} S(2) & = S(3) \\ \implies \frac 1{S(2)} & = \frac 1{S(3)} \\ \frac {2^2-1}{2\cos \theta-1} - 2 & = \frac {3^2-1}{3\cos \theta-1} - 2 \\ \frac 3{2\cos \theta-1} & = \frac 8{3\cos \theta-1} \\ 9\cos \theta - 3 & = 16 \cos \theta - 8 \\ \implies \cos \theta & = \frac 57 \end{aligned}

Hence a + b = 5 + 7 = 12 a+b = 5+7 = \boxed{12} .

Good process but try without using imaginary numbers

Venkataramana gandu - 1 year, 4 months ago

Log in to reply

But why? Perhaps you can show the solution.

Chew-Seong Cheong - 1 year, 4 months ago
Chris Sapiano
Sep 24, 2019

Let P = 1 + 1 x cos θ + 1 x 2 cos 2 θ + 1 x 3 cos 3 θ . . . P = 1 + \frac {1}{x} \cos \theta + \frac {1}{x^2} \cos 2 \theta + \frac {1}{x^3} \cos 3 \theta...

Let Q = 1 x sin θ + 1 x 2 sin 2 θ + 1 x 3 sin 3 θ Q = \frac {1}{x} \sin \theta + \frac {1}{x^2} \sin 2 \theta + \frac {1}{x^3} \sin 3 \theta

(Note that these two series converge)

P + i Q = 1 + 1 x ( cos θ + i sin θ ) + 1 x 2 ( cos 2 θ + i sin 2 θ ) + 1 x 3 ( cos 3 θ + i sin 3 θ ) . . . P + iQ = 1 + \frac {1}{x} (\cos \theta + i\sin\theta) + \frac {1}{x^2} (\cos 2 \theta + i\sin2\theta) + \frac {1}{x^3} (\cos 3 \theta + i\sin3\theta)...

Where i = 1 i = \sqrt{-1}

P + i Q = 1 + 1 x e i θ + 1 x 2 e i 2 θ + 1 x 3 e i 3 θ P + iQ = 1 + \frac {1}{x} e^{i \theta} + \frac {1}{x^2} e^{i 2\theta} + \frac {1}{x^3} e^{i 3\theta}

This is a geometric sequence with a common ratio of 1 x e i θ \frac {1}{x} e^{i \theta} .

So the converging series is equal to 1 1 1 x e i θ = x x e i θ = x ( x cos θ ) i sin θ \frac {1}{ 1 - \frac {1}{x}e^{i \theta}} = \frac {x}{ x -e^{i \theta}} = \frac {x}{( x -\cos \theta) - i\sin\theta}

Rationalising the denominator we get x 2 x cos θ + i x sin θ x 2 + 1 2 x cos θ \frac {x^2 - x\cos\theta + ix\sin\theta}{x^2 + 1 - 2x\cos\theta}

Taking the real part of the equation, P = x 2 x cos θ x 2 + 1 2 x cos θ P = \frac {x^2 - x\cos\theta}{x^2 + 1 - 2x\cos\theta} .

Substituting x = 2 , 3 x = 2,3 we get the equation 4 2 cos θ 5 4 cos θ = 9 3 cos θ 10 6 cos θ \frac {4 - 2\cos\theta}{5 - 4\cos\theta} = \frac {9 - 3\cos\theta}{10 - 6\cos\theta}

1 + n = 1 ( 1 2 n cos n θ ) \Rightarrow 1 + \displaystyle \sum_{n=1}^\infty (\frac {1}{2} ^ n\cos n \theta) = 1 + n = 1 ( 1 3 n cos n θ ) 1 + \displaystyle \sum_{n=1}^\infty (\frac {1}{3} ^ n\cos n \theta)

Solving this equation we know that cos θ = 5 7 \cos\theta = \frac {5}{7} and therefore a + b = 12 a + b = \boxed{12}

Using the fact c o s θ = R e ( e i θ cos\theta =Re(e^{i\theta} ) (where i = ( 1 ) i=√(-1) ) and summing each side of the equality as an infinite G.P. series, we get 7 c o s θ = 5 7cos\theta=5 or c o s θ = 5 7 cos\theta=\dfrac{5}{7} . So a = 5 , b = 7 a=5, b=7 . Hence a + b = 12 a+b=12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...