A complex number needs a complex problem.

Algebra Level 3

A complex number z z is such that z = 1 |z|=1 and

P = z + 1 + z 2 z + 1 P = |z+1|+\left|z^2-z+1\right|

Calculate P max P min P_{\max} P_{\min} .

6 6 13 3 4 \frac{13\sqrt{3}}{4} 19 19 3 3 3\sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 18, 2019

Since z = 1 |z|=1 , z = e i θ \implies z = e^{i\theta} , where θ \theta is the argument of z z . Then

P = z + 1 + z 2 z + 1 = e i θ + 1 + e 2 i θ e i θ + 1 By Euler’s formula: e i θ = cos θ + i sin θ = cos θ + i sin θ + 1 + cos 2 θ + i sin 2 θ cos θ i sin θ + 1 = ( cos θ + 1 ) 2 + sin 2 θ + ( cos 2 θ cos θ + 1 ) 2 + ( sin 2 θ sin θ ) 2 = cos 2 θ + 2 cos θ + 1 + sin 2 θ + ( 2 cos 2 θ 1 cos θ + 1 ) 2 + ( 2 sin θ cos θ sin θ ) 2 = 2 + 2 cos θ + cos 2 θ ( 2 cos θ 1 ) 2 + sin 2 θ ( 2 cos θ 1 ) 2 = 2 + 4 cos 2 θ 2 2 + 2 cos θ 1 = 2 cos θ 2 + 2 cos θ 1 \begin{aligned} P & = |z+1|+|z^2-z+1| \\ & = |e^{i\theta} +1 | + |e^{2i\theta} - e^{i\theta} + 1| \quad \quad \small \color{#3D99F6} \text{By Euler's formula: }e^{i\theta} = \cos \theta + i\sin \theta \\ & = |\cos \theta + i\sin \theta +1 | + |\cos 2\theta + i\sin 2\theta - \cos \theta - i\sin \theta + 1| \\ & = \sqrt{(\cos \theta +1)^2 + \sin^2 \theta} + \sqrt{(\cos 2\theta - \cos \theta +1)^2 + (\sin 2\theta - \sin \theta)^2} \\ & = \sqrt{\cos^2 \theta + 2\cos \theta +1 + \sin^2 \theta} + \sqrt{(2\cos^2 \theta - 1 - \cos \theta +1)^2 + (2\sin \theta \cos \theta - \sin \theta)^2} \\ & = \sqrt{2 + 2\cos \theta} + \sqrt{\cos^2 \theta(2\cos \theta - 1)^2 + \sin^2 \theta (2\cos \theta - 1)^2} \\ & = \sqrt{2 + 4\cos^2 \frac \theta 2-2} +|2\cos \theta - 1| \\ & = \left|2\cos \frac \theta 2\right| +|2\cos \theta - 1| \end{aligned}

We note that P ( θ ) P(\theta) has a period of 2 π 2\pi and is symmetrical about π \pi . We only need to consider for the domain of 0 θ π 0 \le \theta \le \pi .

For 0 θ < π 3 0 \le \theta < \frac \pi 3 , P = 2 cos θ 2 + 2 cos θ 1 P = 2\cos \frac \theta 2 +2\cos \theta - 1 , which is a decreasing function, 3 < P 3 \implies \sqrt 3 < P \le 3 .

For π 3 θ π \frac \pi 3 \le \theta \le \pi ,

P = 2 cos θ 2 + 1 2 cos θ = 2 cos θ 2 + 1 4 cos 2 θ 2 + 2 = 13 4 4 ( cos θ 2 1 4 ) 2 \begin{aligned} P & = 2 \cos \frac \theta 2 + 1 - 2\cos \theta \\ & = 2 \cos \frac \theta 2 + 1 - 4\cos^2 \frac \theta 2 + 2 \\ & = \frac {13}4 - 4\left(\cos \frac \theta 2 - \frac 14 \right)^2 \end{aligned}

Therefore, { max ( P ) = 13 4 4 min ( cos θ 2 1 4 ) 2 = 13 4 when θ = cos 1 1 4 [ π 3 , π ] min ( P ) = 13 4 4 max ( cos θ 2 1 4 ) 2 = 3 when θ = π 3 \begin{cases} \max(P) = \frac {13}4 - 4\min \left(\cos \frac \theta 2 - \frac 14 \right)^2 = \frac {13}4 & \text{when } \theta = \cos^{-1} \frac 14 \in \left[\frac \pi 3, \pi \right] \\ \min(P) = \frac {13}4 - 4\max \left(\cos \frac \theta 2 - \frac 14 \right)^2 = \sqrt 3 & \text{when } \theta = \frac \pi 3 \end{cases}

P max = 13 4 \implies P_{\max} = \frac {13}4 , P min = 3 P_{\min} = \sqrt 3 , and P max P min = 13 3 4 P_{\max}P_{\min} = \boxed{\frac {13\sqrt 3}4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...