A complex number is such that and
Calculate .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since ∣ z ∣ = 1 , ⟹ z = e i θ , where θ is the argument of z . Then
P = ∣ z + 1 ∣ + ∣ z 2 − z + 1 ∣ = ∣ e i θ + 1 ∣ + ∣ e 2 i θ − e i θ + 1 ∣ By Euler’s formula: e i θ = cos θ + i sin θ = ∣ cos θ + i sin θ + 1 ∣ + ∣ cos 2 θ + i sin 2 θ − cos θ − i sin θ + 1 ∣ = ( cos θ + 1 ) 2 + sin 2 θ + ( cos 2 θ − cos θ + 1 ) 2 + ( sin 2 θ − sin θ ) 2 = cos 2 θ + 2 cos θ + 1 + sin 2 θ + ( 2 cos 2 θ − 1 − cos θ + 1 ) 2 + ( 2 sin θ cos θ − sin θ ) 2 = 2 + 2 cos θ + cos 2 θ ( 2 cos θ − 1 ) 2 + sin 2 θ ( 2 cos θ − 1 ) 2 = 2 + 4 cos 2 2 θ − 2 + ∣ 2 cos θ − 1 ∣ = ∣ ∣ ∣ ∣ 2 cos 2 θ ∣ ∣ ∣ ∣ + ∣ 2 cos θ − 1 ∣
We note that P ( θ ) has a period of 2 π and is symmetrical about π . We only need to consider for the domain of 0 ≤ θ ≤ π .
For 0 ≤ θ < 3 π , P = 2 cos 2 θ + 2 cos θ − 1 , which is a decreasing function, ⟹ 3 < P ≤ 3 .
For 3 π ≤ θ ≤ π ,
P = 2 cos 2 θ + 1 − 2 cos θ = 2 cos 2 θ + 1 − 4 cos 2 2 θ + 2 = 4 1 3 − 4 ( cos 2 θ − 4 1 ) 2
Therefore, { max ( P ) = 4 1 3 − 4 min ( cos 2 θ − 4 1 ) 2 = 4 1 3 min ( P ) = 4 1 3 − 4 max ( cos 2 θ − 4 1 ) 2 = 3 when θ = cos − 1 4 1 ∈ [ 3 π , π ] when θ = 3 π
⟹ P max = 4 1 3 , P min = 3 , and P max P min = 4 1 3 3 .