If polynomial f ( x ) = x 2 0 1 8 + A x + B − 2 0 1 8 is divisible by x 2 + x + 1 for all reals x . Find A + B .
Hint: It's in the title of the problem!
You can try more of my fundamental problems here .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great solution!
f ( x ) = x 2 0 1 8 + A x + B − 2 0 1 8
We can let f ( x ) = ( x 2 + x + 1 ) Q ( x )
x 2 0 1 8 + A x + B − 2 0 1 8 = ( x 2 + x + 1 ) Q ( x )
⇒ x 2 0 1 8 − 2 0 1 8 = ( x 2 + x + 1 ) Q ( x ) − A x − B
We know that x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 )
So we can rewrite x 2 0 1 8 − 2 0 1 8 as follows:
x 2 0 1 8 − 2 0 1 8
= ( x 2 0 1 8 − x 2 0 1 5 ) + ( x 2 0 1 5 − x 2 0 1 2 ) + ( x 2 0 1 2 − x 2 0 0 9 ) + . . . + ( x 5 − x 2 ) + x 2 − 2 0 1 8
= x 2 0 1 5 ( x 3 − 1 ) + x 2 0 1 2 ( x 3 − 1 ) + x 2 0 0 9 ( x 3 − 1 ) + . . . + x 2 ( x 3 − 1 ) + x 2 − 2 0 1 8
= ( x 3 − 1 ) ( x 2 0 1 5 + x 2 0 1 2 + x 2 0 0 9 + . . . + x 2 ) + x 2 − 2 0 1 8
= ( x 2 + x + 1 ) ( x − 1 ) ( x 2 0 1 5 + x 2 0 1 2 + x 2 0 0 9 + . . . + x 2 ) + x 2 − 2 0 1 8
= ( x 2 + x + 1 ) ( x − 1 ) ( x 2 0 1 5 + x 2 0 1 2 + x 2 0 0 9 + . . . + x 2 ) + x 2 + x + 1 − x − 2 0 1 9
= ( x 2 + x + 1 ) [ ( x − 1 ) ( x 2 0 1 5 + x 2 0 1 2 + x 2 0 0 9 + . . . + x 2 ) + 1 ] − x − 2 0 1 9
By comparing coeffiecients, A = 1 , B = 2 0 1 9
∴ A + B = 2 0 2 0
Alternative approach: Complex numbers-Euler's formula
Let f ( x ) = ( x 2 + x + 1 ) Q ( x )
When x 2 + x + 1 = 0
x = 2 − 1 ± 3 i = e ± 3 2 π
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ f ( e 3 2 π ) = 0 ⇒ e 3 2 π ⋅ 2 0 1 8 + A e 3 2 π + B − 2 0 1 8 = 0 ⇒ e 3 4 π + A e 3 2 π + B − 2 0 1 8 = 0 f ( e − 3 2 π ) = 0 ⇒ e 3 − 2 π ⋅ 2 0 1 8 + A e 3 − 2 π + B − 2 0 1 8 = 0 ⇒ e 3 − 4 π + A e 3 − 2 π + B − 2 0 1 8 = 0
⇒ ⎩ ⎪ ⎨ ⎪ ⎧ c o s 3 4 π + i s i n 3 4 π + A ( c o s 3 2 π + i s i n 3 2 π ) + B − 2 0 1 8 = 0 c o s 3 − 4 π + i s i n 3 − 4 π + A ( c o s 3 − 2 π + i s i n 3 − 2 π ) + B − 2 0 1 8 = 0
⇒ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 2 − 1 − i 2 3 + A ( 2 − 1 + i 2 3 ) + B − 2 0 1 8 = 0 ⇒ ( − 2 1 − 2 1 A + B − 2 0 1 8 ) + i ( − 2 3 + 2 3 A ) = 0 2 − 1 + i 2 3 + A ( 2 − 1 + i 2 − 3 ) + B − 2 0 1 8 = 0 ⇒ ( − 2 1 − 2 1 A + B − 2 0 1 8 ) + i ( 2 3 − 2 3 A ) = 0
By comparing coefficients,
⎩ ⎪ ⎨ ⎪ ⎧ − 2 1 − 2 1 A + B − 2 0 1 8 = 0 2 3 − 2 3 A = 0
A = 1 , − 2 1 − 2 1 + B − 2 0 1 8 = 0 ⇒ B − 2 0 1 8 − 1 = 0 ⇒ B = 2 0 1 9
∴ A + B = 2 0 2 0
Problem Loading...
Note Loading...
Set Loading...
Since x 2 + x + 1 is a factor of f ( x ) , its zeroes, ω and ω 2 (see note below), must also be roots of f ( x ) . Then we have
f ( ω ) = 0 ω 2 0 1 8 + A ω + B − 2 0 1 8 = 0 ( ω 3 ) 6 7 2 ⋅ ω 2 + A ω + B − 2 0 1 8 = 0 ω 2 + A ω + B − 2 0 1 8 = 0 ( ω 2 + ω + 1 ) + ( A − 1 ) ω + B − 2 0 1 9 = 0 ( A − 1 ) ω + B − 2 0 1 9 = 0 [ Since ω 3 = 1 ] [ Since ω 2 + ω + 1 = 0 ]
Now we just need to equate coefficients. Since ω is complex, we must have A − 1 = 0 and B − 2 0 1 9 = 0 so our answer is A + B = 2 0 2 0
Note: The equation x 3 = 1 can be re-written as ( x − 1 ) ( x 2 + x + 1 ) = 0 ; the second factor yields the complex roots 2 − 1 ± 3 i . These complex cube roots of unity are usually called ω and ω 2 as it's easily verified that each is the square of the other.