A complex sum!

Algebra Level 5

Let α \alpha be a root of the equation

z 23 = 1 z^{23}=1

where α 1 \alpha\not=1 .

If the sum

k = 0 22 1 α 2 k + α k + 1 \displaystyle\sum_{k=0}^{22} \frac{1}{\alpha^{2k}+\alpha^{k}+1}

can be expressed as a b \displaystyle\frac{a}{b} where a a and b b are co prime positive integers find a + b a+b .


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranav Arora
Apr 28, 2014

Rewrite the sum as:

k = 0 22 1 α 2 k + α k + 1 = k = 0 22 1 ( α k ω ) ( α k ω 2 ) = 1 ω ω 2 ( k = 0 22 1 α k ω k = 0 22 1 α k ω 2 ) \displaystyle \sum_{k=0}^{22} \frac{1}{\alpha^{2k}+\alpha^k+1}=\sum_{k=0}^{22} \frac{1}{(\alpha^k-\omega)(\alpha^k-\omega^2)}=\frac{1}{\omega-\omega^2}\left(\sum_{k=0}^{22} \frac{1}{\alpha^k-\omega}-\sum_{k=0}^{22} \frac{1}{\alpha^k-\omega^2}\right)

where ω \omega and ω 2 \omega^2 are non-real cube roots of unity.

Also,

x 23 1 = i = 0 22 ( x α k ) ln ( x 23 1 ) = k = 0 22 ln ( x α k ) \displaystyle x^{23}-1=\prod_{i=0}^{22} \left(x-\alpha^k\right) \Rightarrow \ln\left(x^{23}-1\right)=\sum_{k=0}^{22} \ln\left(x-\alpha^{k}\right)

Differentiate both the sides with respect to x x to obtain,

k = 0 22 1 x α k = 23 x 22 x 23 1 k = 0 22 1 α k x = 23 x 22 1 x 23 \displaystyle \sum_{k=0}^{22} \frac{1}{x-\alpha^k}=\frac{23x^{22}}{x^{23}-1} \Rightarrow \sum_{k=0}^{22} \frac{1}{\alpha^k-x}=\frac{23x^{22}}{1-x^{23}}

Substitute x = ω x=\omega and x = ω 2 x=\omega^2 to obtain the sums, i.e

k = 0 22 1 α k ω = 23 ω 22 1 ω 23 = 23 ω 1 ω 2 \displaystyle \sum_{k=0}^{22} \frac{1}{\alpha^k-\omega}=\frac{23\omega^{22}}{1-\omega^{23}}=\frac{23\omega}{1-\omega^2}

k = 0 22 1 α k ω 2 = 23 ω 44 1 x 46 = 23 ω 2 1 ω \displaystyle \sum_{k=0}^{22} \frac{1}{\alpha^k-\omega^2}=\frac{23\omega^{44}}{1-x^{46}}=\frac{23\omega^2}{1-\omega}

Hence,

k = 0 22 1 α 2 k + α k + 1 = 1 ω ω 2 ( 23 ω 1 ω 2 23 ω 2 1 ω ) = 46 3 \displaystyle \sum_{k=0}^{22} \frac{1}{\alpha^{2k}+\alpha^k+1}=\frac{1}{\omega-\omega^2}\left(\frac{23\omega}{1-\omega^2}-\frac{23\omega^2}{1-\omega} \right) =\boxed{\dfrac{46}{3}}

NOTE : The sums can be evaluated without Calculus. See Calvin's comment on Jatin's solution here: Summing roots of unity .

Very nice solution. Mine approach was also the same. Great !

Sandeep Bhardwaj - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...