A Complex Summation

Algebra Level 3

If A k = cos k π 20 + i sin k π 20 {A}_{k}=\cos { \dfrac { k\pi }{ 20 } } +{ i }\sin { \dfrac { k\pi }{ 20 } } , then

k = 0 2018 A k + 1 A k k = 1 673 A 2 k + 1 A 2 k + 2 = Z \large \frac { \sum _{ k=0 }^{ 2018 }{ \left| { A }_{ k+1 }-{ A }_{ k } \right| } }{ \sum _{ k=1 }^{ 673 }{ \left| { A }_{ 2k+1 }-{ A }_{ 2k+2 } \right| } } = Z

Find Z Z Z^Z .

Notation: i = 1 i = \sqrt { -1 } denotes the imaginary unit .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vitor Juiz
Mar 2, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...