A Complicated Binomial Sum

Calculus Level 5

n = 0 ( 4 n 2 n ) 3 2 n = A cos ( π B ) \large \displaystyle \sum_{n=0}^{\infty} \dbinom{4n}{2n} 32^{-n} = \sqrt{A}\cos\left(\dfrac{\pi}{B}\right)

If the equation above holds true for positive integers A A and B B , then find A × B A\times B .

Notation : ( n k ) = n ! k ! ( n k ) ! \dbinom nk = \dfrac{n!}{k!(n-k)!} denotes the binomial coefficient .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Another approach:

Note that for x < 1 / 4 |x|<1/4 , the power series expansion of 1 1 4 x \frac{1}{\sqrt{1-4x}} is n 0 ( 2 n n ) x n \sum_{n\ge 0}\binom{2n}{n}x^n . Thus we get 1 1 4 x = n 0 ( 2 n n ) x n 1 1 + 4 x = n 0 ( 2 n n ) ( x ) n \frac{1}{\sqrt{1-4x}}=\sum_{n\ge 0}\binom{2n}{n}x^n\\ \frac{1}{\sqrt{1+4x}}=\sum_{n\ge 0}\binom{2n}{n}(-x)^n Adding, we get n 0 ( 4 n 2 n ) x 2 n = 1 2 [ 1 1 4 x + 1 1 + 4 x ] \sum_{n\ge 0}\binom{4n}{2n}x^{2n}=\frac{1}{2}\left[\frac{1}{\sqrt{1-4x}}+\frac{1}{\sqrt{1+4x}}\right] For our question, x = 1 / 4 2 x=1/4\sqrt{2} . Putting this value in the above equation, and after some calculation, it turns out that the desired sum is 2 cos π 8 \boxed{\sqrt{2}\cos\frac{\pi}{8}} .

Nice way, in general any even power series of f ( x ) f(x) is f ( x ) + f ( x ) 2 \displaystyle \frac{f(x)+f(-x)}{2} . I didn't calculate putting 1 4 2 \frac{1}{4\sqrt{2}} , so does it yield 2 cos π 8 \sqrt{2}\cos\frac{\pi}{8} ? .As you have wriiten 2 cos π 8 2\cos\frac{\pi}{8} There will be a 2 \sqrt{2} in place of 2.

Aditya Narayan Sharma - 4 years, 9 months ago

Log in to reply

Oh, thanks for pointing out, correcting the typo.

Samrat Mukhopadhyay - 4 years, 9 months ago

Write ( 4 n 2 n ) = 1 2 π Γ ( n + 1 4 ) Γ ( n + 3 4 ) Γ ( 2 n + 1 ) ( 64 ) n \displaystyle \binom{4n}{2n} = \frac{1}{\sqrt{2}\pi} \frac{\Gamma(n+\frac{1}{4})\Gamma(n+\frac{3}{4})}{\Gamma(2n+1)}(64)^n by Gamma Multiplication Formula.

So we have , S = n = 0 ( 4 n 2 n ) 3 2 n = n = 0 2 n 1 2 π β ( n + 1 4 , n + 3 4 ) \displaystyle S=\sum_{n=0}^{\infty} \binom{4n}{2n}32^{-n} = \sum_{n=0}^{\infty}2^n \frac{1}{\sqrt{2}\pi}\beta(n+\frac{1}{4},n+\frac{3}{4})

Therefore by using integral representation of Beta we have,

S = n = 0 1 2 π 0 2 n x n 3 4 ( 1 + x ) 2 n + 1 d x = 1 2 π 0 x 3 4 + x 1 4 x 2 + 1 d x \displaystyle S=\sum_{n=0}^{\infty} \frac{1}{\sqrt{2}\pi} \int_{0}^{\infty}2^n \frac{x^{n-\frac{3}{4}}}{(1+x)^{2n+1}} dx =\frac{1}{\sqrt{2}\pi} \int_{0}^{\infty} \frac{x^{-\frac{3}{4}}+x^{\frac{1}{4}}}{x^2+1} dx

Now, Consider generating function of Chebyshev polynomials of second kind

n = 0 Γ ( n + 1 ) U n ( x ) ( y ) n Γ ( n + 1 ) = y y 2 + 2 x y + 1 \displaystyle \sum_{n=0}^{\infty} \color{#D61F06}{\Gamma(n+1)}{\rm U}_n(x)\frac{(-y)^n}{\color{#D61F06}{\Gamma(n+1)}} = \frac{y}{y^2+2xy+1}

Using Ramanujan's Master theorem ,

F ( a , s ) = 0 x s x 2 + 2 a x + 1 d x = Γ ( s ) Γ ( 1 s ) U s ( a ) = π sin ( ( 1 s ) cos 1 a ) sin ( π s ) 1 a 2 \displaystyle F(a,s)=\int_{0}^{\infty} \frac{x^s}{x^2+2ax+1}dx = \Gamma(s)\Gamma(1-s)U_{-s}(a) = \frac{\pi\sin((1-s)\cos^{-1}a)}{\sin(\pi |s|)\sqrt{1-a^2}}

Now our sum is equal to : S = 1 2 π ( F ( 0 , 3 4 ) + F ( 0 , 1 4 ) ) \displaystyle S=\frac{1}{\sqrt{2}\pi}(F(0,\frac{-3}{4})+F(0,\frac{1}{4})) .

After some calculations it comes out to be S = sin π 8 + cos π 8 = 2 cos π 8 \displaystyle S=\sin\frac{\pi}{8}+ \cos\frac{\pi}{8} = \sqrt{2}\cos\frac{\pi}{8}

Thus the answer is 2 × 8 = 16 \boxed{2\times8=16}

Or you could use contour integration around a semicircular contour in the upper half plane, centred at the origin (with a small semicircle removed to avoid the origin itself), to show that F ( 0 , s ) = 0 x s x 2 + 1 d x = 1 2 π sec ( 1 2 π s ) 1 < s < 1 . F(0,s) \; = \; \int_0^\infty \frac{x^s}{x^2+1}\,dx \; = \; \tfrac12\pi \sec\big(\tfrac12\pi s\big) \qquad \qquad -1 < s < 1\;.

Mark Hennings - 4 years, 9 months ago

Log in to reply

Yes its always great to see contour methods from you :). Well I thought of directly implementing the identity,

( 4 n 2 n ) = z = 1 ( 1 + z ) 4 n z 2 n + 1 d z \displaystyle \binom{4n}{2n}=\int_{|z|=1}^{} \frac{(1+z)^{4n}}{z^{2n+1}} dz and then on summing it equals,

n = 0 ( 4 n 2 n ) x n = z = 1 z z 2 x ( 1 + z ) 4 d z \displaystyle \sum_{n=0}^{\infty} \binom{4n}{2n}x^n = \int_{|z|=1}^{} \frac{z}{z^2-x(1+z)^4} dz

f ( z ) f(z) tends to infinity on z z attaing values ± 1 ± 1 4 x 2 x 1 \frac{\pm 1 \pm \sqrt{1-4\sqrt{x}}}{2\sqrt{x}}-1 .

Hence on identifying the values which lies inside the unit circle and summing the residues we would get ultimately,

n = 0 ( 4 n 2 n ) x n = 1 16 x + 1 2 32 x \displaystyle \sum_{n=0}^{\infty} \binom{4n}{2n}x^n = \frac{\sqrt{\sqrt{1-16x}+1}}{\sqrt{2-32x}} for x < 1 16 |x|<\frac{1}{16} .

Aditya Narayan Sharma - 4 years, 9 months ago

Log in to reply

Indeed. Yet another nice approach! I fixed the LaTeX typo in your last formula.

Mark Hennings - 4 years, 9 months ago

This reminds me of the generating function of ( 3 n n ) \dbinom{3n}{n} from Summation Contest.

Ishan Singh - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...