A complicated integral

Calculus Level 5

Find the value of 0 5 1 2 arctan ( x + x 1 x 2 1 x 2 x 2 ) d x \displaystyle\int_{0}^{\sqrt{\frac{\sqrt{5}-1}{2}}} \arctan \left(\frac{x+x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right) dx .


The answer is 0.612.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I = 0 5 1 2 tan 1 ( x + x 1 x 2 1 x 2 x 2 ) d x = 0 5 1 2 tan 1 ( x 1 x 2 + x 1 x 2 1 x 2 ) d x = 0 5 1 2 ( tan 1 ( x 1 x 2 ) + tan 1 x ) d x = 0 5 1 2 ( sin 1 x + tan 1 x ) d x By integration by parts = x sin 1 x x 1 x 2 d x + x tan 1 x x 1 + x 2 d x 0 5 1 2 = x sin 1 x + 1 x 2 + x tan 1 x ln ( 1 + x 2 ) 2 0 5 1 2 0.612 \begin{aligned} I & = \int_0^{\sqrt{\frac {\sqrt 5-1}2}} \tan^{-1} \left(\frac {x+x\sqrt{1-x^2}}{\sqrt{1-x^2}-x^2} \right) dx \\ & = \int_0^{\sqrt{\frac {\sqrt 5-1}2}} \tan^{-1} \left(\frac {\frac x{\sqrt{1-x^2}}+x}{1-\frac {x^2}{\sqrt{1-x^2}}} \right) dx \\ & = \int_0^{\sqrt{\frac {\sqrt 5-1}2}} \left(\tan^{-1} \left(\frac x{\sqrt{1-x^2}} \right) + \tan^{-1} x \right) dx \\ & = \int_0^{\sqrt{\frac {\sqrt 5-1}2}} \left(\sin^{-1} x + \tan^{-1} x \right) dx & \small \blue{\text{By integration by parts}} \\ & = x \sin^{-1} x - \int \frac x{\sqrt{1-x^2}} dx + x\tan^{-1}x - \int \frac x{1+x^2} dx \bigg|_0^{\sqrt{\frac {\sqrt 5-1}2}} \\ & = x \sin^{-1} x + \sqrt{1-x^2} + x\tan^{-1}x - \frac {\ln(1+x^2)}2 \bigg|_0^{\sqrt{\frac {\sqrt 5-1}2}} \\ & \approx \boxed{0.612} \end{aligned}

Mark Hennings
Dec 3, 2019

We calculate that d d x tan 1 ( x + x 1 x 2 1 x 2 x 2 ) = 1 1 x 2 + 1 1 + x 2 \frac{d}{dx}\,\tan^{-1}\left(\frac{x + x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right) \; = \; \frac{1}{\sqrt{1-x^2}} + \frac{1}{1+x^2} and hence, integrating by parts, tan 1 ( x + x 1 x 2 1 x 2 x 2 ) d x = x tan 1 ( x + x 1 x 2 1 x 2 x 2 ) + 1 x 2 + 1 2 ln ( 1 + x 2 ) + c \int \tan^{-1}\left(\frac{x + x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right)\,dx \; = \; x\tan^{-1}\left(\frac{x + x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right) + \sqrt{1-x^2} + \tfrac12\ln(1 + x^2) + c which makes the definite integral equal to 1 2 π 5 1 2 + 1 2 ( 5 3 ) 1 2 ln ( 5 + 1 2 ) = 0.612312 \tfrac12\pi\sqrt{\frac{\sqrt{5}-1}{2}} + \tfrac12(\sqrt{5}-3) - \tfrac12\ln\left(\frac{\sqrt{5}+1}{2}\right) \; = \; \boxed{ 0.612312}

we can also do it by tan-1(a) + tan-1(b) = tan-1((a+b)/(1-ab)), here a = x/√(1-x²) and b = x

Kukkadapu Sudhamsh - 1 year, 6 months ago

Log in to reply

That is Amal Hari's approach, since tan 1 x 1 x 2 = sin 1 x \tan^{-1} \tfrac{x}{\sqrt{1-x^2}} = \sin^{-1}x .

Mark Hennings - 1 year, 6 months ago
Amal Hari
Dec 3, 2019

arcsin x + arctan x = arctan ( x + x 1 x 2 1 x 2 x 2 ) \arcsin x +\arctan x = \displaystyle\arctan \left(\frac{x+x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right) for the valid domain

This can be proved as follows:

Suppose arcsin x + arctan y = z \arcsin x +\arctan y =z Let

sin a = x \sin a =x and tan b = y \tan b =y

we have a + b = z a+b =z

tan ( a + b ) = tan a + tan b 1 tan a tan b \tan\left( a+b\right) =\displaystyle\frac{\tan a +\tan b}{1-\tan a \tan b}

From sin a = x \sin a=x we can get

tan a = x 1 x 2 \tan a =\displaystyle\frac{x}{\sqrt{1-x^{2}}}

and tan b = y \tan b =y

tan ( a + b ) = x 1 x 2 + y 1 x × y 1 x 2 \tan\left( a+b\right) =\displaystyle\frac{\frac{x}{\sqrt{1-x^{2}}} +y}{1-\frac{x\times y}{\sqrt{1-x^{2}}}}

( a + b ) = arctan ( x 1 x 2 + y 1 x × y 1 x 2 ) \left( a+b\right) =\displaystyle\arctan\left(\frac{\frac{x}{\sqrt{1-x^{2}}} +y}{1-\frac{x\times y}{\sqrt{1-x^{2}}}}\right)

( a + b ) = z = arcsin x + arctan y = arctan ( x 1 x 2 + y 1 x × y 1 x 2 ) \left( a+b\right)=z=\arcsin x +\arctan y=\displaystyle\arctan\left(\frac{\frac{x}{\sqrt{1-x^{2}}} +y}{1-\frac{x\times y}{\sqrt{1-x^{2}}}}\right)

now make y = x y=x

arcsin x + arctan x = arctan ( x 1 x 2 + x 1 x 2 1 x 2 ) \arcsin x +\arctan x=\displaystyle\arctan\left(\frac{\frac{x}{\sqrt{1-x^{2}}} +x}{1-\frac{x^{2}}{\sqrt{1-x^{2}}}}\right)

factoring out 1 x 2 \sqrt{1-x^{2}} we have

arcsin x + arctan x = arctan ( x + x 1 x 2 1 x 2 x 2 ) \arcsin x +\arctan x = \displaystyle\arctan \left(\frac{x+x\sqrt{1-x^2}}{\sqrt{1-x^2} -x^2}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...