Find the value of ∫ 0 2 5 − 1 arctan ( 1 − x 2 − x 2 x + x 1 − x 2 ) d x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We calculate that d x d tan − 1 ( 1 − x 2 − x 2 x + x 1 − x 2 ) = 1 − x 2 1 + 1 + x 2 1 and hence, integrating by parts, ∫ tan − 1 ( 1 − x 2 − x 2 x + x 1 − x 2 ) d x = x tan − 1 ( 1 − x 2 − x 2 x + x 1 − x 2 ) + 1 − x 2 + 2 1 ln ( 1 + x 2 ) + c which makes the definite integral equal to 2 1 π 2 5 − 1 + 2 1 ( 5 − 3 ) − 2 1 ln ( 2 5 + 1 ) = 0 . 6 1 2 3 1 2
we can also do it by tan-1(a) + tan-1(b) = tan-1((a+b)/(1-ab)), here a = x/√(1-x²) and b = x
Log in to reply
That is Amal Hari's approach, since tan − 1 1 − x 2 x = sin − 1 x .
arcsin x + arctan x = arctan ( 1 − x 2 − x 2 x + x 1 − x 2 ) for the valid domain
This can be proved as follows:
Suppose arcsin x + arctan y = z Let
sin a = x and tan b = y
we have a + b = z
tan ( a + b ) = 1 − tan a tan b tan a + tan b
From sin a = x we can get
tan a = 1 − x 2 x
and tan b = y
tan ( a + b ) = 1 − 1 − x 2 x × y 1 − x 2 x + y
( a + b ) = arctan ( 1 − 1 − x 2 x × y 1 − x 2 x + y )
( a + b ) = z = arcsin x + arctan y = arctan ( 1 − 1 − x 2 x × y 1 − x 2 x + y )
now make y = x
arcsin x + arctan x = arctan ( 1 − 1 − x 2 x 2 1 − x 2 x + x )
factoring out 1 − x 2 we have
arcsin x + arctan x = arctan ( 1 − x 2 − x 2 x + x 1 − x 2 )
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 5 − 1 tan − 1 ( 1 − x 2 − x 2 x + x 1 − x 2 ) d x = ∫ 0 2 5 − 1 tan − 1 ( 1 − 1 − x 2 x 2 1 − x 2 x + x ) d x = ∫ 0 2 5 − 1 ( tan − 1 ( 1 − x 2 x ) + tan − 1 x ) d x = ∫ 0 2 5 − 1 ( sin − 1 x + tan − 1 x ) d x = x sin − 1 x − ∫ 1 − x 2 x d x + x tan − 1 x − ∫ 1 + x 2 x d x ∣ ∣ ∣ ∣ 0 2 5 − 1 = x sin − 1 x + 1 − x 2 + x tan − 1 x − 2 ln ( 1 + x 2 ) ∣ ∣ ∣ ∣ 0 2 5 − 1 ≈ 0 . 6 1 2 By integration by parts