A Complicated Number

Find the last two digits of

1 9 1 7 1 5 . . . 3 1 \Large 19^{17^{15^{.^{.^{.^{3^1}}}}}}

19 79 39 99 59

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the number given be N = 1 9 1 7 1 5 a N = 19^{17^{15^a}} . We need to find N m o d 100 N \bmod 100 .

N 1 9 1 7 1 5 a m o d λ ( 100 ) (mod 100) Since gcd ( 19 , 100 ) = 1 , Euler’s theorem applies. 1 9 1 7 1 5 a m o d 20 (mod 100) Carmichael’s lambda λ ( 100 ) = 20 1 9 1 7 1 5 a m o d 4 m o d 20 (mod 100) Again gcd ( 17 , 20 ) = 1 and λ ( 20 ) = 4 1 9 1 7 3 m o d 20 (mod 100) See note 1. 1 9 13 (mod 100) See note 2. ( 20 1 ) 13 (mod 100) ( 260 1 ) (mod 100) Last two terms of binomial expansion, 59 (mod 100) earlier terms are divisible by 100. \large \begin{aligned} N & \equiv 19^{\color{#3D99F6} 17^{15^a} \bmod \lambda (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since }\gcd(19, 100) = 1 \text{, Euler's theorem applies.} \\ & \equiv 19^{\color{#3D99F6} 17^{15^a} \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{Carmichael's lambda }\lambda (100) = 20 \\ & \equiv 19^{17^{\color{#3D99F6} 15^a \bmod 4} \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{Again }\gcd(17, 20) = 1 \text{ and }\lambda (20) = 4 \\ & \equiv 19^{17^{\color{#3D99F6}3} \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{See note 1.} \\ & \equiv 19^{\color{#3D99F6}13} \text{ (mod 100)} & \small \color{#3D99F6} \text{See note 2.} \\ & \equiv (20-1)^{13} \text{ (mod 100)} \\ & \equiv {\color{#3D99F6}(260-1)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Last two terms of binomial expansion,} \\ & \equiv \boxed{59} \text{ (mod 100)} & \small \color{#3D99F6} \text{earlier terms are divisible by 100.} \end{aligned}

Notes:

  1. 1 5 a ( 16 1 ) a 1 3 (mod 4) Since a is odd. 15^a \equiv (16-1)^a \equiv {\color{#3D99F6} - 1} \equiv 3 \text{ (mod 4)} \quad \small \color{#3D99F6} \text{Since }a \text{ is odd.}

  2. 1 7 3 ( 20 3 ) 3 27 7 13 (mod 20) 17^3 \equiv (20-3)^3 \equiv -27 \equiv - 7 \equiv 13 \text{ (mod 20)}


References:

Sam Zhou
Aug 9, 2019

It can be easily found that 1 9 5 99 1 19^{5}≡99≡-1 mod 100 100 . This means that 9 9 10 1 99^{10}≡1 mod 100 100 and that 1 9 10 n + k 1 9 k 19^{10n+k}≡19^{k} for positive integers n , k n,k .

Therefore, we need to find 1 7 1 5 . . . 3 1 17^{15^{...^{3^{1}}}} , or equivalently 7 1 5 . . . 3 1 7^{15^{...^{3^{1}}}} , mod 10 10 .

As 7 4 1 7^{4}≡1 mod 10 10 , we need to find 1 5 1 3 . . . 3 1 15^{13^{...^{3^{1}}}} mod 4 4 .

The above is equivalent to ( 1 ) 1 3 1 1 . . . 3 1 (-1)^{13^{11^{...^{3^{1}}}}} mod 4 4 . As 1 3 1 1 . . . 3 1 13^{11^{...^{3^{1}}}} is odd, 1 5 1 3 1 1 . . . 3 1 1 3 15^{13^{11^{...^{3^{1}}}}}≡-1≡3 mod 4 4 .

We can then deduce that 1 7 1 5 . . . 3 1 7 3 3 17^{15^{...^{3^{1}}}}≡7^{3}≡3 mod 10 10 .

Therefore, 1 9 1 7 1 5 . . . 3 1 1 9 3 59 19^{17^{15^{...^{3^{1}}}}}≡19^{3}≡\boxed{59} mod 100 100 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...