A complicated series

Algebra Level 4

Let S = 3 1 × 2 × 3 + 5 2 × 3 × 4 + 7 3 × 4 × 5 + . . . . . . . . + 37 18 × 19 × 20 S = \frac{3}{1\times 2 \times 3} + \frac{5}{2 \times 3 \times 4} + \frac{7}{3 \times 4 \times 5} +........+ \frac{37}{18 \times 19 \times 20} S S can be represented as a b c a \frac{b}{c} , where b , c b,c are coprime. Find a + b + c a + b + c .

Note : This problem is not an original problem.


The answer is 874.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tan Li Xuan
Mar 9, 2014

S S can be represented as 1 + 2 1 × 2 × 3 + 2 + 3 2 × 3 × 4 + . . . . . . 18 + 19 18 × 19 × 20 \frac{1+2}{1 \times 2 \times 3} + \frac{2+3}{2 \times 3 \times 4} +......\frac{18+19}{18 \times 19 \times 20} which can be simplified to 1 2 × 3 + 1 1 × 3 + 1 3 × 4 + 1 2 × 4 . . . . . . . . . 1 19 × 20 + 1 18 × 20 \frac{1}{2 \times 3} + \frac{1}{1 \times 3} + \frac{1}{3 \times 4} + \frac{1}{2 \times 4 } ......... \frac{1}{19 \times 20} + \frac{1}{18 \times 20} This can be further simplified into three different series 1 2 × 3 + 1 3 × 4 + . . . . . . . . . + 1 19 × 20 ( 1 ) \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + ......... + \frac{1}{19 \times 20} ------ (1) 1 1 × 3 + 1 3 × 5 + . . . . . . 1 17 × 19 ( 2 ) \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + ...... \frac{1}{17 \times 19} ------(2) 1 2 × 4 + 1 4 × 6 + . . . . . . . . . 1 18 × 20 ( 3 ) \frac{1}{2 \times 4} + \frac{1}{4 \times 6} + ......... \frac{1}{18 \times 20} ------(3) Then,we can calculate the sum of these three series.Series (1) is equal to 1 2 1 20 = 9 20 \frac{1}{2} - \frac{1}{20} = \frac{9}{20} .Series (2) is equal to 1 2 × ( 1 1 1 19 ) = 9 19 \frac{1}{2} \times (\frac{1}{1}-\frac{1}{19}) = \frac{9}{19} .Series (3) is equal to 1 2 × ( 1 2 1 20 ) = 9 40 \frac{1}{2} \times(\frac{1}{2} - \frac{1}{20}) = \frac{9}{40} .Adding these up we get S = 873 760 = 1 113 760 S = \frac{873}{760} = 1\frac{113}{760} .So a + b + c = 1 + 113 + 760 = 874 a + b + c = 1 + 113 + 760 = 874 .

Lol the question tuition gave, I heard you to write just these few lines. The first time I saw this question i used two full white boards >.<

Takeda Shigenori - 7 years, 2 months ago

Log in to reply

:)

Tan Li Xuan - 7 years, 2 months ago

reached till second step but I failed to group them

BHANU VISHWAKARMA - 7 years, 2 months ago

the same to me :)

Thanh Viet - 7 years, 1 month ago
Albert Sunny
Mar 23, 2014

We have S = n = 1 18 2 n + 1 n ( n + 1 ) ( n + 2 ) = n = 1 18 1 n + 2 ( 1 n + 1 n + 1 ) S = \sum^{18}_{n=1} \frac{2n+1}{n(n+1)(n+2)} = \sum^{18}_{n=1} \frac{1}{n+2} \left( \frac{1}{n} + \frac{1}{ n+1} \right) = n = 1 18 1 2 ( 1 n 1 n + 2 ) + ( 1 n + 1 1 n + 2 ) = \sum^{18}_{n=1} \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+2} \right)+ \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = 1 2 n = 1 18 ( 1 n 1 n + 1 ) + 3 2 n = 1 18 ( 1 n + 1 1 n + 2 ) = \frac{1}{2} \sum^{18}_{n=1} \left( \frac{1}{n} - \frac{1}{n+1} \right)+ \frac{3}{2} \sum^{18}_{n=1} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = 1 2 ( 1 1 19 ) + 3 2 ( 1 2 1 20 ) = 1 113 760 = \frac{1}{2} \left( 1 - \frac{1}{19} \right)+ \frac{3}{2} \left( \frac{1}{2} - \frac{1}{20} \right) = 1 \frac{113}{760} Thus, we have a = 1 , b = 113 , c = 760 a + b + c = 874 a=1, b = 113, c = 760 \Rightarrow a + b + c = \boxed{874}

That was clever manipulation in the 3rd step. This wouldn't have required much manipulation though:

2 n + 1 n ( n + 1 ) ( n + 2 ) = 2 ( n + 2 ) 3 n ( n + 1 ) ( n + 2 ) = 2 n ( n + 1 ) 3 n ( n + 1 ) ( n + 2 ) , \displaystyle\frac{2n+1}{n(n+1)(n+2)}=\frac{2(n+2)-3}{n(n+1)(n+2)}=\frac{2}{n(n+1)}-\frac{3}{n(n+1)(n+2)}\,, from which we get

( 2 n 2 n + 1 ) 3 2 ( 1 n 1 n + 1 1 n + 1 + 1 n + 2 ) \displaystyle\big(\frac{2}{n}-\frac{2}{n+1}\big)-\frac{3}{2}\big(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+1}+\frac{1}{n+2}\big) .

Nishant Sharma - 7 years ago
Moshiur Mission
Mar 13, 2014

rth term tr = (2r+1)/r(r+1)(r+2) where r = 1 to 18 solving we get S = 873/760 or 1/113/760 so a + b + c =874

Sridhar Sri
Feb 26, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...