A confusing series

Calculus Level pending

n = 1 ( 2 n 2 ) ! ( 1 ) n 1 2 2 n 1 ( n 1 ) ! n ! = ? \sum_{n=1}^\infty \frac {(2n-2)!(-1)^{n-1}}{2^{2n-1}(n-1)!n!}=\ ?

Round your answer to 5 decimal places.


The answer is 0.41421.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 27, 2020

Consider the binomial expansion or Taylor's series of 1 + x \sqrt{1+x} .

( 1 + x ) 1 2 = 1 + 1 2 x + ( 1 2 ) ( 1 2 ) 2 ! x 2 + ( 1 2 ) ( 1 2 ) ( 3 2 ) 3 ! x 3 + ( 1 2 ) ( 1 2 ) ( 3 2 ) ( 5 2 ) 4 ! x 4 + = 1 + 1 2 x + n = 2 ( 1 ) n 1 ( 2 n 3 ) ! ! 2 n n ! x n = 1 + 1 2 x + n = 2 ( 1 ) n 1 ( 2 n 2 ) ! 2 2 n 1 ( n 1 ) ! n ! x n = 1 + n = 1 ( 1 ) n 1 ( 2 n 2 ) ! 2 2 n 1 ( n 1 ) ! n ! x n \begin{aligned} (1+x)^\frac 12 & = 1 + \frac 12 x + \frac {\left(\frac 12\right)\left(-\frac 12\right)}{2!}x^2 + \frac {\left(\frac 12\right)\left(-\frac 12\right)\left(-\frac 32\right)}{3!}x^3 + \frac {\left(\frac 12\right)\left(-\frac 12\right)\left(-\frac 32\right)\left(-\frac 52\right)}{4!}x^4 + \cdots \\ & = 1 + \frac 12 x + \sum_{n=2}^\infty \frac {(-1)^{n-1}(2n-3)!!}{2^nn!}x^n \\ & = 1 + \frac 12 x + \sum_{n=2}^\infty \frac {(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!}x^n \\ & = 1 + \sum_{n=1}^\infty \frac {(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!}x^n \end{aligned}

Putting x = 1 x=1 , we have n = 1 ( 1 ) n 1 ( 2 n 2 ) ! 2 2 n 1 ( n 1 ) ! n ! = 2 1 0.41421 \displaystyle \sum_{n=1}^\infty \frac {(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!} = \sqrt 2 - 1 \approx \boxed{0.41421} .

Diego Garcia
Jan 26, 2020

This series is the taylor series of f(x)= x \sqrt{x} around point a=1 and x=2 without the first term. So the answer is 2 \sqrt{2} - 1 or 0.41421

(This is my first problem so sorry if it's bad.)

You may specify answer to be 5 decimal places but the system will take 3 significant figures.

Chew-Seong Cheong - 1 year, 4 months ago

Log in to reply

I didn't know about that.

Diego Garcia - 1 year, 4 months ago

Log in to reply

Try more problems instead of just setting problems.

Chew-Seong Cheong - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...