A conic section problem for year 2020

Geometry Level 5

On the coordinate plane, point F F is the right focus point of ellipse E : x 2 2020 + y 2 2019 = 1 E:\dfrac{x^2}{2020}+\dfrac{y^2}{2019}=1 .

Line l 1 , l 2 l_1,l_2 both pass through point F F and l 1 l_1 intersects with E E at point A , B A,B , l 2 l_2 intersects with E E at point C , D C,D , and l 1 l 2 l_1 \perp l_2 .

Then A B + C D |AB|+|CD| has maximum value d m a x d_{max} and minimum value d m i n d_{min} , S A C B D S_{ACBD} has maximum value S m a x S_{max} and minimum value S m i n S_{min} .

Find the value of 1 0 7 ( d m a x d m i n + S m a x S m i n ) \lfloor 10^7(d_{max}-d_{min}+S_{max}-S_{min}) \rfloor .

Note:

  • S A C B D S_{ACBD} denote the area of the quadrilateral A C B D ACBD .

  • Since it has very huge numbers, consider generalizing it first before substitute.


The answer is 2585.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt Janko
Feb 28, 2020

Put a = 2020 a = \sqrt{2020} and b = 2019 b = \sqrt{2019} , and let m m denote the slope of l 1 l_1 . The right focus of E E is ( 1 , 0 ) (1,0) , so the end points of A B AB satisfy y = m ( x 1 ) and x 2 a 2 + y 2 b 2 = 1. y = m(x - 1) \text{ and } \frac {x^2}{a^2} + \frac {y^2}{b^2} = 1. Substituting m ( x 1 ) m(x - 1) for y y in the second equation gives x 2 a 2 + m 2 ( x 1 ) 2 b 2 = 1 , \frac {x^2}{a^2} + {m^2(x - 1)^2}{b^2} = 1, which is quadratic in x x and has solutions a 2 m 2 ± a b ( a 2 1 ) m 2 + b 2 a 2 m 2 + b 2 . \frac{a^2m^2 \pm ab \sqrt{(a^2 - 1)m^2 + b^2}}{a^2m^2 + b^2}. Notice that a 2 1 = 2020 1 = 2019 = b 2 a^2 - 1 = 2020 - 1 = 2019 = b^2 , so these solutions can be written as a 2 m 2 ± a b b 2 m 2 + b 2 a 2 m 2 + b 2 = a 2 m 2 ± a b 2 m 2 + 1 a 2 m 2 + b 2 . \frac{a^2m^2 \pm ab \sqrt{b^2m^2 + b^2}}{a^2m^2 + b^2} = \frac{a^2m^2 \pm ab^2 \sqrt{m^2 + 1}}{a^2m^2 + b^2}. Label these solutions x 1 x_1 and x 2 x_2 and put y 1 = m ( x 1 1 ) y_1 = m(x_1 - 1) and y 2 = m ( x 2 1 ) y_2 = m(x_2 - 1) . Then A B = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 = ( x 1 x 2 ) 2 + m 2 ( x 1 x 2 ) 2 = x 1 x 2 m 2 + 1 = 2 a b 2 ( m 2 + 1 ) a 2 m 2 + b 2 . AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_1 - x_2)^2 + m^2(x_1 - x_2)^2} = |x_1 - x_2| \sqrt{m^2 + 1} = \frac {2ab^2 (m^2 + 1)}{a^2 m^2 + b^2}. The slope of l 2 l_2 is m 1 -m^{-1} . Repeating the algebra above using m 1 -m^{-1} shows C D = 2 a b 2 ( m 2 + 1 ) a 2 m 2 + b 2 = 2 a b 2 ( m 2 + 1 ) a 2 + b 2 m 2 . CD = \frac {2ab^2(m^{-2} + 1)}{a^2m^{-2} + b^2} = \frac {2ab^2(m^2 + 1)}{a^2 + b^2 m^2}. Therefore, d = A B + C D = 2 a b 2 ( m 2 + 1 ) a 2 m 2 + b 2 + 2 a b 2 ( m 2 + 1 ) a 2 m 2 + b 2 = 2 a b 2 ( a 2 + b 2 ) ( m 2 + 1 ) 2 ( a 2 m 2 + b 2 ) ( a 2 + b 2 m 2 ) , (1) d = AB + CD = \frac{2ab^2(m^2 + 1)}{a^2m^2 + b^2} + \frac{2ab^2(m^2 + 1)}{a^2m^2 + b^2} = \frac {2ab^2(a^2 + b^2)(m^2 + 1)^2}{(a^2m^2 + b^2)(a^2 + b^2m^2)}, \tag{1} and additionally S = 1 2 A B C D = 1 2 2 a b 2 ( m 2 + 1 ) a 2 m 2 + b 2 2 a b 2 ( m 2 + 1 ) a 2 + b 2 m 2 = 2 a 2 b 4 ( m 2 + 1 ) 2 ( a 2 m 2 + b 2 ) ( a 2 + b 2 m 2 ) . (2) S = \frac 12 \cdot AB \cdot CD = \frac 12 \cdot \frac {2ab^2(m^2 + 1)}{a^2m^2 + b^2} \cdot \frac {2ab^2(m^2 + 1)}{a^2 + b^2m^2} = \frac {2a^2b^4(m^2 + 1)^2}{(a^2m^2 + b^2)(a^2 + b^2m^2)}. \tag{2} By (1) and (2), the extreme values of d d and S S depend on ( m 2 + 1 ) 2 ( a 2 m 2 + b 2 ) ( a 2 + b 2 m 2 ) , \frac {(m^2 + 1)^2}{(a^2m^2 + b^2)(a^2 + b^2m^2)}, and this value achieves its maximum when m = 0 m = 0 and its minimum when m = 1. m = 1. Evaluating (1) and (2) at m = 0 m = 0 and m = 1 m = 1 shows 179.73313000 8 a b 2 ( a 2 + b 2 ) ( a 2 + b 2 ) 2 d 2 a b 2 ( a 2 + b 2 ) a 2 b 2 179.73314102 179.73313000 \approx \frac {8ab^2(a^2 + b^2)}{(a^2 + b^2)^2} \leq d \leq \frac {2ab^2(a^2 + b^2)}{a^2b^2} \approx 179.73314102 and also 4037.99975248 8 a 2 b 4 ( a 2 + b 2 ) 2 S 2 b 2 = 4038. 4037.99975248 \approx \frac {8a^2b^4}{(a^2 + b^2)^2} \leq S \leq 2b^2 = 4038. Hence the desired value is 1 0 7 ( d max d min + S max S min ) = 1 0 7 ( 179.73314102 179.73313000 + 4038 4037.99975248 ) = 2585 . \lfloor 10^7(d_{\text{max}} - d_{\text{min}} + S_{\text{max}} - S_{\text{min}}) \rfloor = \lfloor 10^7 (179.73314102 - 179.73313000 + 4038 - 4037.99975248) \rfloor = \boxed{2585}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...