A Converging Sum

Calculus Level 3

S = lim n i = 1 n i cos i n n sin i n i 2 S=\lim_{n→\infty}\sum_{i=1}^{n}\frac{i\cos\frac{i}{n}-n\sin\frac{i}{n}}{i^{2}}

If S = sin ( m ) k S=\sin(m)-k , where m m and k k are positive integers, find 10 m + k 10m+k .

No calculators allowed.


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 20, 2019

S = lim n i = 1 n i cos i n n sin i n i 2 Divide up and down by n = lim n i = 1 n i n cos i n sin i n n ( i n ) 2 By Riemann sums: = 0 1 x cos x sin x x 2 d x lim n k = a b f ( k n ) n = a n b n f ( x ) d x = sin x x 0 1 Since d d x ( sin x x ) = x cos x sin x x 2 = sin 1 1 Note that lim x 0 sin x x = 1 \begin{aligned} S & = \lim_{n \to \infty} \sum_{i=1}^n \frac {i\cos \frac in - n \sin \frac in}{i^2} & \small \color{#3D99F6} \text{Divide up and down by }n \\ & = \lim_{n \to \infty} \sum_{i=1}^n \frac {\frac in \cos \frac in - \sin \frac in}{n \left(\frac in\right)^2} & \small \color{#3D99F6} \text{By Riemann sums: } \\ & = \int_0^1 \frac {x\cos x - \sin x}{x^2} dx & \small \color{#3D99F6} \lim_{n \to \infty} \sum_{k=a}^b \frac {f \left(\frac kn\right)}n = \int_\frac an^\frac bn f(x) \ dx \\ & = \frac {\sin x}x \ \bigg|_0^1 & \small \color{#3D99F6} \text{Since } \frac d{dx} \left(\frac {\sin x}x\right) = \frac {x\cos x - \sin x}{x^2} \\ & = \sin 1 - 1 & \small \color{#3D99F6} \text{Note that } \lim_{x \to 0} \frac {\sin x}x = 1 \end{aligned}

Therefore, 10 m + n = 10 ( 1 ) + 1 = 11 10m+n = 10(1)+1 = \boxed{11} .


Reference: Riemann sums

Sam Zhou
Sep 19, 2019

S S can be expressed as lim n i = 1 n cos i n i n sin i n i 2 = lim n i = 1 n 1 n cos i n i n sin i n ( i n ) 2 \lim_{n→\infty}\sum_{i=1}^{n}\frac{\cos\frac{i}{n}}{i}-\frac{n\sin\frac{i}{n}}{i^{2}}=\lim_{n→\infty}\sum_{i=1}^{n}\frac{1}{n}\frac{\cos\frac{i}{n}}{\frac{i}{n}}-\frac{\sin\frac{i}{n}}{(\frac{i}{n})^{2}} .

Notice that this is a Riemann Sum of 0 1 cos x sin x x \int_{0}^{1} \cos x-\frac{\sin x}{x} .

Then, using integration by parts, we can get S = [ sin x x ] 0 1 = sin 1 1 lim x 0 sin x x = sin 1 1 S=[\frac{\sin x}{x}]_{0}^{1}=\frac{\sin 1}{1}-\lim_{x→0}\frac{\sin x}{x}=\sin 1-1 .

This gives the answer of 11 \boxed{11} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...