The function cos ( 5 θ ) can be written as a cos 5 ( θ ) − b cos 3 ( θ ) + c cos ( θ ) where a , b , and c are positive integers. Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I plugged in values for pi/3, pi/4, and pi/6, and then solved the three simultaneous equations.
Since it is an identity, we can chose any value for the angle. Instead of pi/6, it would be simple to take 0. We can not get any thing if we put angle = pi/2..
It is the application of de moivre's theorem
cos 5 θ = cos 5 θ − 1 0 cos 3 θ sin 2 θ + 5 cos θ sin 4 θ
cos 5 θ = cos 5 θ − 1 0 cos 3 θ ( 1 − cos 2 θ ) + 5 cos θ ( 1 − cos 2 θ ) 2
cos 5 θ = cos 5 θ − 1 0 cos 3 θ + 1 0 cos 5 θ + 5 cos θ ( 1 + cos 4 θ − 2 cos 2 θ
cos 5 θ = 1 1 cos 5 θ − 1 0 cos 3 θ + 5 cos θ + 5 cos 5 θ − 1 0 cos 3 θ
cos 5 θ = 1 6 cos 5 θ − 2 0 cos 3 θ + 5 cos θ
so a+ b + c = 41
be very careful with what you’re typing up, and make sure you read the preview to ensure that what you have is what you are thinking of. You are missing several ^, which caused your excellent solution to be hard to decipher.
You can solve this problem using trigonometric identities , just you need this propeties below:
cos(a+b) = cos(a).cos(b)-sin(a).sin(c)
cos(2x) = 2cos^{2}(x)-1
sin(2x) = 2.sin(x).cos(x)
Then, you can modify cos(5x) as cos(2x + 3x) or cos(x + 4x) or cos(6x - x) and other manipulating of trigonometry. But, I think simple that you choose cos(2x + 3x) . Because, cos(2x + 3x) = cos(2x).cos(3x)-sin(2x).sin(3x) (required cos(3x) and sin(3x) => find it using trigonometric identities too). The results, must be cos(5x) = 16cos^{5}(x)-20cos^{3}(x)+5cos(x) .
But, there is another way to solve this problem too. I just realized and read about De Moivre's Formula , you just required the Binomial Theorem . Check this out. It's easy to apply the formula, be patient.
Use DeMoivre's Formula. The equation become: c o s ( 5 x ) + i s i n ( 5 x ) = ( c o s ( x ) + i s i n ( x ) ) 5 = ( 0 5 ) c o s 5 ( x ) + ( 1 5 ) c o s 4 ( x ) i s i n ( x ) + ( 2 5 ) c o s 3 ( x ) i 2 s i n 2 ( x ) + ( 3 5 ) c o s 2 ( x ) i 3 s i n 3 ( x ) + ( 4 5 ) c o s ( x ) i 4 s i n 4 ( x ) + ( 5 5 ) i 5 s i n 5 ( x ) = c o s 5 ( x ) + 5 i c o s 4 ( x ) s i n ( x ) − 1 0 c o s 3 ( x ) s i n 2 ( x ) − 1 0 i c o s 2 ( x ) s i n 3 ( x ) + 5 c o s ( x ) s i n 4 ( x ) + i s i n 5 ( x ) Regard the real part,we get: c o s ( 5 x ) = c o s 5 ( x ) − 1 0 c o s 3 ( x ) s i n 2 ( x ) + 5 c o s ( x ) s i n 4 ( x ) let s i n 2 ( x ) = 1 − c o s 2 ( x ) Finally,the result is: c o s 5 θ = 1 6 c o s 5 θ − 2 0 c o s 3 θ + 5 c o s θ
Very nice.
cos (5x)= cos (2x +3x)
= cos 2x cos 3x - sin 2x sin 3x
= (2 cos^2 x-1)(4 cos^3 x-3 cos x) - (2 sin x cos x)(3 sin x - 4 sin^3 x)
= 8 cos^5 x -6 cos^3 x -4 cos^3 x +3 cos x -6sin^2 x cos x +8 sin^4 x cos x
= 8 cos^5 x -10 cos^3 x +3 cos x -6 cos^3 x +12 cos^3 x -6 cos x +8 cos^5 x -16 cos^3 x +8 cos x
= 16 cos^5 x -20 cos^3 x +5 cos x
a+b+c=16+20+5
=41
cos(5x) = {(cosx + isinx)^{5} + (cosx - isinx)^{5}}/2 ............(Applying De Moivre's Formula )
Let cosx = c, sinx = s.
Therefore,
cos(5x) = {(c^{5} + i 5 c^{4}s - 10 c^{3}s^{2} - i 10 c^{2}s^{3} + 5 cs^{4} + i s^{5}) + (c^{5} - i 5 c^{4}s - 10 c^{3}s^{2} + i 10 c^{2}s^{3} + 5 cs^{4} - i s^{5})}/2
= c^{5} - 10 c^{3}s^{2} + 5 cs^{4}
= c^{5} - 10 c^{3}(1 - c^{2}) + 5 c(1 - c^{2})^{2}
= 11 c^{5} - 10 c^{3} + 5 c^{5} - 10 c^{3} + 5 c
= 16 c^{5} - 20 c^{3} + 5 c
Clearly, a = 16, b = 20, c = 5 and a + b + c = 41 (Ans)
De Moivre's Theorem : ( c o s ( θ ) + i sin ( θ ) ) n = cos n ( θ ) + i sin n ( θ ) .
cos 5 θ + i sin 5 θ U s i n g : sin 2 θ = 1 − cos 2 θ . cos 5 θ + i sin 5 θ T a k e − t h e − r e a l − p a r t s : cos 5 θ + i sin 5 θ a + b + c = 1 6 + 2 0 + 5 = 4 1 = ( c o s θ + i sin θ ) 5 = cos 5 θ + 5 i cos 4 θ sin θ + 1 0 i 2 cos 3 θ sin 2 θ + 1 0 i 3 cos 2 θ sin 3 θ + 5 i 4 cos θ sin 4 θ + i 5 sin 5 θ = ( cos 5 θ − 1 0 cos 3 θ sin 2 θ + 5 cos θ sin 4 θ ) + i ( 5 cos 4 θ sin θ − 1 0 cos 2 θ sin 3 θ + sin 5 θ ) = ( 1 6 c o s 5 θ − 2 0 c o s 3 θ + 5 c o s θ ) + i ( 5 cos 4 θ sin θ − 1 0 cos 2 θ sin 3 θ + sin 5 θ ) = ( 1 6 c o s 5 θ − 2 0 c o s 3 θ + 5 c o s θ )
Put theta = 0 to get a - b +c = 1 , put theta = pi/3 to get a/32 - b/8 +c/2 = 1/2 , put theta = pi/4 to get a/4 - b/2 + c = -1, solve to get b =20, now, a + b+ c = a - b +c +2b = 1 +2*20 =41.
Yes, the way I did. but your are very young, 16 only.
I used Chebyshev polynomials
How?
θ=π,−1=−a+b−c
θ=π/3,1/2=a/25−b/23+c
θ=π/4,21/2=a2−5/2−b2−3/2+c2−1/2
a=16,b20,c=5,a+b+c=41
Staff test solution. Hi everyone.
i used cos(3theta) and cos(2theta) and changed sine to cos but my method was a lengthy one it took me at least 5 mins.
(cos(x) + iSin(x))^n = cos(nx) + iSin(nx) here n=5 expanding this and comparing the real and imaginary terms we get cos(5x) = 16cos(x)^5 - 20cos(x)^3 + 5cos(x)
can you please explain a little more please
Let cos θ = x , sin θ = y . After expanding cos 5 θ we'll get 4(x^5) - 4(x^3) + x - 12(x^3)(y^2) + 4x(y^2). Since (y^2) = 1 - (x^2) , we can further expand it and finally we'll get 16 cos 5 θ - 20 cos 3 θ + 5 cos θ . By comparison, a = 16, b = 20, c = 5. Therefore, a + b + c = 16 + 20 + 5 = 41.
You should clarify how you’re doing the expansion, since there are many ways to carry it out.
Problem Loading...
Note Loading...
Set Loading...
cos 5 θ = cos ( 4 θ + θ ) = cos 4 θ cos θ − sin 4 θ sin θ = ( 2 cos 2 2 θ − 1 ) cos θ − ( 2 cos 2 θ sin 2 θ ) sin θ = ( 2 [ 2 cos 2 θ − 1 ] 2 − 1 ) cos θ − ( 2 [ 2 cos 2 θ − 1 ] [ 2 sin θ cos θ ] ) sin θ = ( 2 [ 2 x 2 − 1 ] 2 − 1 ) x − ( 2 [ 2 x 2 − 1 ] [ 2 x y ] ) y = ( 2 [ 4 x 4 − 4 x 2 + 1 ] − 1 ) x − 4 x y 2 ( 2 x 2 − 1 ) = ( 8 x 4 − 8 x 2 + 2 − 1 ) x − 8 x 3 y 2 + 4 x y 2 = ( 8 x 4 − 8 x 2 + 1 ) x − 8 x 3 ( 1 − x 2 ) + 4 x ( 1 − x 2 ) = 8 x 5 − 8 x 3 + x − 8 x 3 + 8 x 5 + 4 x − 4 x 3 = 1 6 x 5 − 2 0 x 3 + 5 x = 1 6 cos 5 θ − 2 0 cos 3 θ + 5 cos θ