A Cosine Expression

Geometry Level 3

The function cos ( 5 θ ) \cos(5 \theta) can be written as a cos 5 ( θ ) b cos 3 ( θ ) + c cos ( θ ) a \cos^5(\theta) - b \cos^3 (\theta) + c \cos(\theta) where a a , b b , and c c are positive integers. Find a + b + c a+b+c .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

15 solutions

Adrian Duong
Jul 24, 2013

cos 5 θ = cos ( 4 θ + θ ) = cos 4 θ cos θ sin 4 θ sin θ = ( 2 cos 2 2 θ 1 ) cos θ ( 2 cos 2 θ sin 2 θ ) sin θ = ( 2 [ 2 cos 2 θ 1 ] 2 1 ) cos θ ( 2 [ 2 cos 2 θ 1 ] [ 2 sin θ cos θ ] ) sin θ = ( 2 [ 2 x 2 1 ] 2 1 ) x ( 2 [ 2 x 2 1 ] [ 2 x y ] ) y = ( 2 [ 4 x 4 4 x 2 + 1 ] 1 ) x 4 x y 2 ( 2 x 2 1 ) = ( 8 x 4 8 x 2 + 2 1 ) x 8 x 3 y 2 + 4 x y 2 = ( 8 x 4 8 x 2 + 1 ) x 8 x 3 ( 1 x 2 ) + 4 x ( 1 x 2 ) = 8 x 5 8 x 3 + x 8 x 3 + 8 x 5 + 4 x 4 x 3 = 16 x 5 20 x 3 + 5 x = 16 cos 5 θ 20 cos 3 θ + 5 cos θ \begin{aligned} \cos 5\theta &= \cos (4\theta + \theta)\\ &= \cos 4\theta \cos \theta - \sin 4\theta \sin \theta \\ &= (2\cos^2 2\theta - 1) \cos \theta - (2\cos2\theta \sin 2\theta) \sin \theta \\ &= (2[2 \cos^2 \theta - 1]^2 -1) \cos \theta - (2 [2\cos^2 \theta - 1] [2 \sin\theta \cos\theta])\sin\theta\\ &= (2[2x^2 - 1]^2 - 1)x - (2[2x^2 - 1][2xy])y \\ &= (2[4x^4 - 4x^2 + 1] - 1)x - 4xy^2(2x^2 - 1) \\ &= (8x^4 - 8x^2 + 2 - 1)x - 8x^3y^2 + 4xy^2 \\ &= (8x^4 - 8x^2 + 1)x - 8x^3(1-x^2) + 4x(1-x^2) \\ &= 8x^5 - 8x^3 + x - 8x^3 + 8x^5 + 4x - 4x^3 \\ &= 16x^5 - 20x^3 + 5x \\ &= 16 \cos^5 \theta - 20 \cos^3 \theta + 5\cos\theta \end{aligned}

Tim Kington
Jul 25, 2013

I plugged in values for pi/3, pi/4, and pi/6, and then solved the three simultaneous equations.

Since it is an identity, we can chose any value for the angle. Instead of pi/6, it would be simple to take 0. We can not get any thing if we put angle = pi/2..

Niranjan Khanderia - 7 years, 3 months ago
Piyush Kaushik
Jul 23, 2013

It is the application of de moivre's theorem

cos 5 θ = cos 5 θ 10 cos 3 θ sin 2 θ + 5 cos θ sin 4 θ \cos5\theta = \cos5\theta - 10\cos^{3}\theta \sin^{2}\theta + 5\cos\theta \sin^{4}\theta

cos 5 θ = cos 5 θ 10 cos 3 θ ( 1 cos 2 θ ) + 5 cos θ ( 1 cos 2 θ ) 2 \cos5\theta = \cos5\theta - 10\cos^{3}\theta (1 - \cos^{2}\theta) + 5\cos\theta (1 - \cos^{2}\theta)^{2}

cos 5 θ = cos 5 θ 10 cos 3 θ + 10 cos 5 θ + 5 cos θ ( 1 + cos 4 θ 2 cos 2 θ \cos5\theta = \cos5\theta - 10\cos^{3}\theta + 10\cos^{5} \theta + 5\cos\theta (1 + \cos^{4}\theta - 2\cos^{2}\theta

cos 5 θ = 11 cos 5 θ 10 cos 3 θ + 5 cos θ + 5 cos 5 θ 10 cos 3 θ \cos5\theta = 11\cos5\theta - 10\cos^{3}\theta + 5\cos\theta + 5\cos^{5}\theta - 10\cos^{3}\theta

cos 5 θ = 16 cos 5 θ 20 cos 3 θ + 5 cos θ \cos5\theta = 16\cos5\theta - 20\cos^{3}\theta + 5\cos\theta

so a+ b + c = 41

Moderator note:

be very careful with what you’re typing up, and make sure you read the preview to ensure that what you have is what you are thinking of. You are missing several ^, which caused your excellent solution to be hard to decipher.

Andrias Meisyal
Jul 21, 2013

You can solve this problem using trigonometric identities , just you need this propeties below:

cos(a+b) = cos(a).cos(b)-sin(a).sin(c)

cos(2x) = 2cos^{2}(x)-1

sin(2x) = 2.sin(x).cos(x)

Then, you can modify cos(5x) as cos(2x + 3x) or cos(x + 4x) or cos(6x - x) and other manipulating of trigonometry. But, I think simple that you choose cos(2x + 3x) . Because, cos(2x + 3x) = cos(2x).cos(3x)-sin(2x).sin(3x) (required cos(3x) and sin(3x) => find it using trigonometric identities too). The results, must be cos(5x) = 16cos^{5}(x)-20cos^{3}(x)+5cos(x) .

But, there is another way to solve this problem too. I just realized and read about De Moivre's Formula , you just required the Binomial Theorem . Check this out. It's easy to apply the formula, be patient.

Miryone Heartilly
Jul 27, 2013

Use DeMoivre's Formula. The equation become: c o s ( 5 x ) + i s i n ( 5 x ) = ( c o s ( x ) + i s i n ( x ) ) 5 cos(5x) + i sin(5x) = (cos(x) + i sin(x))^5 = ( 5 0 ) c o s 5 ( x ) + ( 5 1 ) c o s 4 ( x ) i s i n ( x ) + ( 5 2 ) c o s 3 ( x ) i 2 s i n 2 ( x ) + ( 5 3 ) c o s 2 ( x ) i 3 s i n 3 ( x ) + ( 5 4 ) c o s ( x ) i 4 s i n 4 ( x ) + ( 5 5 ) i 5 s i n 5 ( x ) = \binom{5}{0} cos^5(x) + \binom {5}{1} cos^4(x) i sin(x) + \binom{5}{2} cos^3(x) i^2 sin^2(x) + \\ \binom{5}{3} cos^2(x) i^3 sin^3(x) + \binom{5}{4} cos(x) i^4 sin^4(x) + \binom{5}{5} i^5 sin^5(x) = c o s 5 ( x ) + 5 i c o s 4 ( x ) s i n ( x ) 10 c o s 3 ( x ) s i n 2 ( x ) 10 i c o s 2 ( x ) s i n 3 ( x ) + 5 c o s ( x ) s i n 4 ( x ) + i s i n 5 ( x ) = cos^5(x) + 5i cos^4(x) sin(x) - 10 cos^3(x) sin^2(x) - 10i cos^2(x) sin^3(x) +\\ 5 cos(x) sin^4(x) + i sin^5(x) Regard the real part,we get: c o s ( 5 x ) = c o s 5 ( x ) 10 c o s 3 ( x ) s i n 2 ( x ) + 5 c o s ( x ) s i n 4 ( x ) cos(5x) = cos^5(x) - 10 cos^3(x) sin^2(x) + 5 cos(x) sin^4(x) let s i n 2 ( x ) = 1 c o s 2 ( x ) sin^2(x) = 1 - cos^2(x) Finally,the result is: c o s 5 θ = 16 c o s 5 θ 20 c o s 3 θ + 5 c o s θ cos 5θ = 16 cos^5 θ -20 cos^3 θ + 5 cos θ

Very nice.

Niranjan Khanderia - 7 years, 3 months ago
Yong Daniel
Jul 24, 2013

cos (5x)= cos (2x +3x)

        = cos 2x cos 3x - sin 2x sin 3x

        = (2 cos^2 x-1)(4 cos^3 x-3 cos x) - (2 sin x cos x)(3 sin x - 4 sin^3 x)

        = 8 cos^5 x -6 cos^3 x -4 cos^3 x +3 cos x -6sin^2 x cos x +8 sin^4 x cos x

        = 8 cos^5 x -10 cos^3 x +3 cos x -6 cos^3 x +12 cos^3 x -6 cos x +8 cos^5 x -16 cos^3 x +8 cos x

        = 16 cos^5 x -20 cos^3 x +5 cos x

a+b+c=16+20+5

      =41
Shubham Kumar
Jul 24, 2013

cos(5x) = {(cosx + isinx)^{5} + (cosx - isinx)^{5}}/2 ............(Applying De Moivre's Formula )

Let cosx = c, sinx = s.

Therefore,

cos(5x) = {(c^{5} + i 5 c^{4}s - 10 c^{3}s^{2} - i 10 c^{2}s^{3} + 5 cs^{4} + i s^{5}) + (c^{5} - i 5 c^{4}s - 10 c^{3}s^{2} + i 10 c^{2}s^{3} + 5 cs^{4} - i s^{5})}/2

       = c^{5} - 10 c^{3}s^{2} + 5 cs^{4}

       = c^{5} - 10 c^{3}(1 - c^{2}) + 5 c(1 - c^{2})^{2}

       = 11 c^{5} - 10 c^{3} + 5 c^{5} - 10 c^{3} + 5 c

       = 16 c^{5} - 20 c^{3} + 5 c

Clearly, a = 16, b = 20, c = 5 and a + b + c = 41 (Ans)

Moch. Reza Habibi
Jul 29, 2015

De Moivre's Theorem : ( c o s ( θ ) + i sin ( θ ) ) n = cos n ( θ ) + i sin n ( θ ) (cos(\theta) + i\sin(\theta))^n = \cos n(\theta) + i\sin n(\theta) .

cos 5 θ + i sin 5 θ = ( c o s θ + i sin θ ) 5 = cos 5 θ + 5 i cos 4 θ sin θ + 10 i 2 cos 3 θ sin 2 θ + 10 i 3 cos 2 θ sin 3 θ + 5 i 4 cos θ sin 4 θ + i 5 sin 5 θ = ( cos 5 θ 10 cos 3 θ sin 2 θ + 5 cos θ sin 4 θ ) + i ( 5 cos 4 θ sin θ 10 cos 2 θ sin 3 θ + sin 5 θ ) U s i n g : sin 2 θ = 1 cos 2 θ . cos 5 θ + i sin 5 θ = ( 16 c o s 5 θ 20 c o s 3 θ + 5 c o s θ ) + i ( 5 cos 4 θ sin θ 10 cos 2 θ sin 3 θ + sin 5 θ ) T a k e t h e r e a l p a r t s : cos 5 θ + i sin 5 θ = ( 16 c o s 5 θ 20 c o s 3 θ + 5 c o s θ ) a + b + c = 16 + 20 + 5 = 41 \begin{aligned} \cos 5\theta + i \sin 5\theta &= (cos\theta + i\sin\theta)^5\\ &= \cos^5\theta + 5 i \cos^4\theta \sin\theta + 10 i^2 \cos^3\theta \sin^2\theta\\ &\quad + 10 i^3 \cos^2\theta \sin^3\theta + 5 i^4 \cos\theta \sin^4\theta + i^5 \sin^5\theta\\ &= (\cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta)\\ &\quad + i (5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta)\\ Using : \sin^2 \theta = 1 - \cos^2 \theta.\\ \cos 5\theta + i \sin 5\theta &= (16 cos^5 \theta - 20 cos^3 \theta + 5 cos \theta)\\ &\quad + i (5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta)\\ Take-the-real-parts:\\ \cos 5\theta + i \sin 5\theta &= (16 cos^5 \theta - 20 cos^3 \theta + 5 cos \theta)\\ \\ a + b + c = 16 + 20 + 5 = 41\\ \end{aligned}

Put theta = 0 to get a - b +c = 1 , put theta = pi/3 to get a/32 - b/8 +c/2 = 1/2 , put theta = pi/4 to get a/4 - b/2 + c = -1, solve to get b =20, now, a + b+ c = a - b +c +2b = 1 +2*20 =41.

Yes, the way I did. but your are very young, 16 only.

Niranjan Khanderia - 7 years, 3 months ago
Kacper Kaśków
Jul 27, 2013

I used Chebyshev polynomials

How?

Niranjan Khanderia - 7 years, 3 months ago

θ=π,−1=−a+b−c

θ=π/3,1/2=a/25−b/23+c

θ=π/4,21/2=a2−5/2−b2−3/2+c2−1/2

a=16,b20,c=5,a+b+c=41

Daniel Hirschberg
Jul 25, 2013

Staff test solution. Hi everyone.

Snehdeep Arora
Jul 24, 2013

i used cos(3theta) and cos(2theta) and changed sine to cos but my method was a lengthy one it took me at least 5 mins.

Nikhil Ps
Jul 23, 2013

(cos(x) + iSin(x))^n = cos(nx) + iSin(nx) here n=5 expanding this and comparing the real and imaginary terms we get cos(5x) = 16cos(x)^5 - 20cos(x)^3 + 5cos(x)

can you please explain a little more please

Snehdeep Arora - 7 years, 10 months ago
Wee Hau Chin
Jul 22, 2013

Let cos θ \cos \theta = x , sin θ \sin \theta = y . After expanding cos 5 θ \cos 5\theta we'll get 4(x^5) - 4(x^3) + x - 12(x^3)(y^2) + 4x(y^2). Since (y^2) = 1 - (x^2) , we can further expand it and finally we'll get 16 cos 5 θ \cos^5 \theta - 20 cos 3 θ \cos^3 \theta + 5 cos θ \cos \theta . By comparison, a = 16, b = 20, c = 5. Therefore, a + b + c = 16 + 20 + 5 = 41.

Moderator note:

You should clarify how you’re doing the expansion, since there are many ways to carry it out.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...