A Crazy Quartic

Level pending

Let a , b , c , d a,b,c,d be the roots of the following equation.

x 4 + 10 x 3 + k x 2 + 100 x 1001 = 0 x^4+10x^3+kx^2+100x-1001=0

If a b = 77 ab=77 , the value of k k can be expressed as a mixed number p q r p\frac{q}{r} , where p p is a positive integer, and q q and r r are coprime positive integers. Find the value of p + q + r p+q+r .


The answer is 166.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sujoy Roy
Dec 17, 2013

a + b + c + d = 10 , a b + a c + a d + b c + b d + c d = k , a b c + b c d + c d a + d a b = 100 a+b+c+d=-10, ab+ac+ad+bc+bd+cd=k, abc+bcd+cda+dab=-100 and a b c d = 1001. abcd=-1001.

As a b = 77 ab=77 , c d = 13 cd=-13 . From a b c + b c d + c d a + d a b = 100 abc+bcd+cda+dab=-100 we get, a b ( c + d ) + c d ( a + b ) = 100 \ 77 ( c + d ) 13 ( a + b ) = 100 \ 77 ( c + d ) + 13 ( 10 + c + d ) = 100 \ c + d = 23 9 ab(c+d)+cd(a+b)=-100 \ \Rightarrow 77(c+d)-13(a+b)=-100 \ \Rightarrow 77(c+d) +13(10+c+d)=-100 \ \Rightarrow c+d=-\frac{23}{9}

So, a + b = 67 9 a+b=-\frac{67}{9}

Now, k = a b + c d + ( a + b ) ( c + d ) = 77 13 + 23 9 67 9 = 83 2 81 k=ab+cd+(a+b)(c+d)=77-13+\frac{-23}{9}*\frac{-67}{9}=83\frac{2}{81} . So, p + q + r = 83 + 2 + 81 = 166 p+q+r=83+2+81=\boxed{166}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...