A cryptogram (part 1)

Logic Level 3

A B × C D E F G H I J \begin{array} { l l l l l } & & & A & B \\ \times & & C & D & E \\ \hline F & G & H & I & J \\ \hline \\ \end{array}

In the above cryptogram, all the letters represent distinct digits from 0 to 9.

Suppose the 5-digit number F G H I J \overline{FGHIJ} is not a multiple of 9, what is the remainder when F G H I J \overline{FGHIJ} is divided by 9?

Note that A , C , F 0 A, C, F \neq 0 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
May 15, 2017

Let p = A B p = \overline{AB} , q = C D E q = \overline{CDE} and r = F G H I J r = \overline{FGHIJ} . Then we have p q = r pq=r and p + q + r = 0 + 1 + 2 + + 9 0 ( m o d 9 ) p+q +r = 0+1+2 + \ldots + 9 \equiv 0 \pmod 9 . Now p q p q ( m o d 9 ) pq \equiv -p-q \pmod 9 , which means that ( p + 1 ) ( q + 1 ) 1 ( m o d 9 ) (p+1)(q+1) \equiv 1 \pmod 9 .

Using the equations above, we have all the possible values of p , q p,q and r r (modulo 9), as follows.

p q r 0 0 0 1 4 4 2 3 6 0 4 1 4 5 6 3 0 7 7 4 8 \begin{array} { l l l l l } & & p & q & r \\ \hline & & 0 & 0 & 0 \\ \hline & & 1 & 4 & 4 \\ \hline & & 2 & - & - \\ \hline & & 3 & 6 & 0 \\ \hline & & 4 & 1 & 4 \\ \hline & & 5 & - & - \\ \hline & & 6 & 3 & 0 \\ \hline & & 7 & 7 & 4 \\ \hline & & 8 & - & - \\ \hline \\ \end{array}

So r 0 ( m o d 9 ) r \equiv 0 \pmod 9 or r 4 ( m o d 9 ) r \equiv \boxed{4} \pmod 9 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...