A cryptogram (part 4)

A B C D + E F G H I J \begin{array} { l l l l l } & & A & B \\ & & C & D \\+ & E & F & G \\ \hline & H & I & J \\ \hline \\ \end{array}

In the above equation, each of the letters A , B , C , D , E , F , G , H , I A, B, C, D, E, F, G, H, I and J J represents a different one of the digits 0, 1, 2, ..., 9.

Note that A , C , E A, C, E and H H cannot be 0.

Let M M and N N be the maximum and minimum values H I J \overline{HIJ} respectively. Find the value of M N M-N .


The answer is 729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
May 12, 2019

Let p = A B p=\overline{AB} , q = C D q=\overline{CD} , r = E F G r=\overline{EFG} and s = H I J s=\overline{HIJ} .

Note that p + q + r + s 0 + 1 + 2 + + 9 0 ( m o d 9 ) p+q+r+s \equiv 0+1+2 + \ldots + 9 \equiv 0 \pmod 9 and hence ( p + q + r ) + s = s + s = 2 s 0 ( m o d 9 ) (p+q+r)+s = s+s =2s \equiv 0 \pmod 9 , which implies that s 0 ( m o d 9 ) s \equiv 0 \pmod 9 .

We claim that M = 963 M = 963 and N = 234 N=234 and hence M N = 729 M-N=729 . The following shows some possible arrangements.

4 0 5 1 + 8 7 2 9 6 3 \begin{array} { l l l l l } & & 4 & 0 \\ & & 5 & 1 \\+ & 8 & 7 & 2 \\ \hline & 9 & 6 & 3 \\ \hline \\ \end{array} 5 7 6 8 + 1 0 9 2 3 4 \begin{array} { l l l l l } & & 5 & 7 \\ & & 6 & 8 \\+ & 1 & 0 & 9 \\ \hline & 2 & 3 & 4 \\ \hline \\ \end{array}

Next we show that M 981 M \neq 981 , M 972 M \neq 972 .

Suppose M = 981 M = 981 . Then r < 770 r < 770 and p + q < ( 70 + 70 ) p+q < (70+70) which means that p + q + r < 910 < s p+q+r<910<s , a contradiction.

Suppose M = 972 M = 972 . Then r + p + q < 865 + 55 + 45 = 965 < s r +p+q < 865 +55+45 = 965 <s , a contradiction.

For N N , it is clear that N > 200 N>200 . We will show that N 207 N \neq 207 and N 216 N \neq 216 .

Suppose N = 207 N = 207 . Then r + p + q > 131 + 41 + 51 = 223 > s r +p+q > 131 +41+51 = 223 >s , a contradiction.

Suppose N = 216 N = 216 . Then r > 300 > s r> 300 >s , a contradiction.

p/s: A related video .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...