A cryptogram (part 4A)

A B C D + E F G H I J \begin{array} { l l l l l } & & A & B \\ & & C & D \\+ & E & F & G \\ \hline & H & I & J \\ \hline \\ \end{array}

In the above equation, each of the letters A , B , C , D , E , F , G , H , I A, B, C, D, E, F, G, H, I and J J represents a different one of the digits 0, 1, 2, ..., 9.

Note that A , C , E A, C, E and H H cannot be 0.

Suppose H = 9 H=9 . How many possible answers for H I J \overline{HIJ} ?

2 5 0 3 4 6 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alex Burgess
May 20, 2019

We have 2 H I J 0 ( m o d 9 ) 2 * HIJ \equiv 0 (mod 9) , so, H I J 0 ( m o d 9 ) HIJ \equiv 0 (mod 9) .

N u m b e r 981 = 7 ? ? + A B + C D , b u t 6 + 5 + 4 < 28 972 = 8 ? ? + A B + C D , b u t 6 + 5 + 4 < 17 963 = 40 + 51 + 872 954 = 20 + 61 + 873 945 = 10 + 62 + 873 936 = 10 + 52 + 874 927 = 10 + 53 + 864 918 = 7 ? ? + A B + C D , b u t 6 + 5 + 4 < 21 \begin{matrix} Number \\ 981 & = 7?? + AB + CD, but 6+5+4 < 28 \\ 972 & =8?? + AB + CD, but 6+5+4 < 17 \\ 963 & = 40 + 51 + 872 \\ 954 & = 20 + 61 + 873 \\ 945 & = 10 + 62 + 873 \\ 936 & = 10 + 52 + 874 \\ 927 & = 10 + 53 + 864 \\ 918 & = 7?? + AB + CD, but 6+5+4 < 21 \\ \end{matrix}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...