The cubic polynomial
x 3 − 9 x 2 + 2 0 x + 2
can be expressed in terms of y as
y 3 + c y + d ,
where c and d are real numbers and y has a linear relationship with x .
What is the value of c + d ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here I propose a very simple solution Consider the cubic function: f ( x ) = x 3 − 9 x 2 + 2 0 x + 2
Now, transforming the cubic function to the depressed form is by substituting x = y − b / 3 a
which in this case evaluates to x = y − ( − 9 ) / 3 ( 1 ) = y + 3
Hence,
f ( y + 3 ) = y 3 + c y + d
Sub y = 1
f ( 4 ) = 1 + c + d
Evaluating f ( 4 ) gets 2
So
c + d = 2 − 1 = 1
Surprised you didn't get any upvotes. Good job
We can write the equation as,
x
3
−
9
x
2
+
2
0
x
+
2
=
0
.
x
3
−
9
x
2
+
2
7
x
−
2
7
−
2
7
x
+
2
7
+
2
0
x
+
2
=
0
.
(
x
−
3
)
3
−
7
x
+
2
9
=
0
.
(
x
−
3
)
3
−
7
x
+
2
1
+
8
=
0
.
(
x
−
3
)
3
−
7
(
x
−
3
)
+
8
=
0
.
Comparing this equation with
y
3
+
c
y
+
d
=
0
we get,
c
=
−
7
,
d
=
8
and the linear relation as
y
=
x
−
3
.
Therefore,
c
+
d
=
−
7
+
8
=
1
.
put /$ x=y+9/3 /$ /newline $ (y+3)^3-9(y+3)^2+20(y+3)+2= $ /newline $ y^3+9y^2+27y+27-9y^2-54y-81+20y+60+2= $ /newline $ y^3-7y+8 $
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Cardano's Method
Assuming you don't know the identity that depresses the cubic , let x = y − p . Then the cubic is:
x 3 − 9 x 2 + 2 0 x + 2 ( y − p ) 3 − 9 ( y − p ) 2 + 2 0 ( y − p ) + 2 y 3 − 3 p y 2 + 3 p 2 y − p 3 − 9 ( y 2 − 2 p y + p 2 ) + 2 0 y − 2 0 p + 2 y 3 + ( − 3 p − 9 ) y 2 + ( 3 p 2 + 1 8 p + 2 0 ) y + ( − p 3 − 9 p 2 − 2 0 p + 2 ) .
The 2nd degree term should have a 0 coefficient to fit the required form. Thus,
− 3 p − 9 p = 0 = − 3 .
Substituting this value of p back into the expression gives:
y 3 − 7 y + 8 .
Thus, c + d = 1 .