A curious limit

Calculus Level 3

If a n = ( 2 n n ) 1 a_n = \dbinom{2n}{n}^{-1} find lim n a n + 1 a n \displaystyle\lim_{n \to \infty}{\left|\dfrac{a_{n+1}}{a_{n}}\right|} .


Bonus: Is n = 1 a n \displaystyle\sum_{n=1}^{\infty}{a_n} convergent? If yes, what is the sum?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tapas Mazumdar
Mar 31, 2017

First we see the main problem i.e. for the limit:

lim n a n + 1 a n = lim n ( 2 n n ) ( 2 n + 2 n + 1 ) = lim n ( 2 n ) ! / ( n ! ) 2 ( 2 n + 2 ) ! / ( ( n + 1 ) ! ) 2 = lim n n + 1 2 ( 2 n + 1 ) = lim n 1 + 1 n 2 ( 2 + 1 n ) = 1 4 = 0.25 \begin{aligned} \displaystyle \lim_{n \to \infty} \left| \dfrac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \dfrac{\dbinom{2n}{n}}{\dbinom{2n+2}{n+1}} \right| \\ &= \lim_{n \to \infty} \dfrac{{(2n)!}/{(n!)^2}}{{(2n+2)!}/{{((n+1)!)}^2}} \\ &= \lim_{n \to \infty} \dfrac{n+1}{2 (2n+1)} \\ &= \lim_{n \to \infty} \dfrac{1+\frac 1n}{2 \left( 2 + \frac 1n \right)} \\ &= \dfrac{1}{4} \\ &= \boxed{0.25} \end{aligned}


Now, heading onto the more challenging bonus :

Since by ratio test we have already shown that lim n a n + 1 a n = 0.25 < 1 \displaystyle \lim_{n \to \infty} \left| \dfrac{a_{n+1}}{a_n} \right| = 0.25 < 1 , therefore the series converges. Its sum is calculated as follows

n = 1 1 ( 2 n n ) = n = 1 ( n ! ) ( n ! ) ( 2 n ) ! = n = 1 Γ ( n + 1 ) Γ ( n + 1 ) Γ ( 2 n + 1 ) = n = 1 ( 2 n + 1 ) Γ ( n + 1 ) Γ ( n + 1 ) Γ ( 2 n + 2 ) = n = 1 ( 2 n + 1 ) B ( n + 1 , n + 1 ) = n = 1 ( 2 n + 1 ) 0 1 t n ( 1 t ) n d t = 2 n = 1 0 1 n t n ( 1 t ) n d t + n = 1 0 1 t n ( 1 t ) n d t = 2 0 1 n = 1 n t n ( 1 t ) n d t + 0 1 n = 1 t n ( 1 t ) n d t interchanging order of summation and integral by Fubini’s theorem = 2 0 1 t ( t 1 ) ( t ( t 1 ) + 1 ) 2 d t + 0 1 t ( t 1 ) ( t ( t 1 ) + 1 ) d t = 2 [ 1 2 t 3 ( t 2 t + 1 ) + 2 3 3 arctan ( 2 t 1 3 ) ] 0 1 + [ t 2 3 arctan ( 2 t 1 3 ) ] 0 1 = 2 [ 2 27 ( 3 π 9 ) ] + [ 2 π 3 3 1 ] = 4 3 π 27 + 4 3 + 2 π 3 3 1 = 1 27 ( 2 3 π + 9 ) \begin{aligned} \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{\dbinom{2n}{n}} &= \sum_{n=1}^{\infty} \dfrac{(n!) \cdot (n!)}{(2n)!} \\ &= \sum_{n=1}^{\infty} \dfrac{\Gamma (n+1) \Gamma (n+1)}{\Gamma (2n+1)} \\ &= \sum_{n=1}^{\infty} (2n+1) \cdot \dfrac{\Gamma (n+1) \Gamma (n+1)}{\Gamma (2n+2)} \\ &= \sum_{n=1}^{\infty} (2n+1) \cdot B(n+1,n+1) \\ &= \sum_{n=1}^{\infty} (2n+1) \cdot \int_0^1 t^n (1-t)^n \, dt \\ &= 2 \sum_{n=1}^{\infty} \int_0^1 n t^n (1-t)^n \, dt + \sum_{n=1}^{\infty} \int_0^1 t^n (1-t)^n \, dt \\ &= 2 \int_0^1 \sum_{n=1}^{\infty} n t^n (1-t)^n \, dt + \int_0^1 \sum_{n=1}^{\infty} t^n (1-t)^n \, dt \qquad \qquad \qquad \small{\color{#3D99F6}\text{interchanging order of summation and integral by Fubini's theorem}} \\ &= 2 \int_0^1 \dfrac{t(t-1)}{(t(t-1)+1)^2} \, dt + \int_0^1 \dfrac{t(t-1)}{(t(t-1)+1)} \, dt \\ &= 2 {\left[ \dfrac{1-2t}{3(t^2-t+1)} + \dfrac{2}{3 \sqrt{3}} \arctan \left( \dfrac{2t-1}{\sqrt{3}} \right) \right]}_0^1 + {\left[ t - \dfrac{2}{\sqrt{3}} \arctan \left( \dfrac{2t-1}{\sqrt{3}} \right) \right]}_0^1 \\ &= 2 \left[ - \dfrac{2}{27} (\sqrt{3} \pi - 9) \right] + \left[ \dfrac{2 \pi}{3 \sqrt{3}} - 1 \right] \\ &= - \dfrac{4 \sqrt{3} \pi}{27} + \dfrac{4}{3} + \dfrac{2 \pi}{3 \sqrt{3}} - 1 \\ &= \boxed{\dfrac{1}{27} (2 \sqrt{3} \pi + 9)} \end{aligned}

Very well written solution! +1 :-)

Akeel Howell - 4 years, 2 months ago
Guilherme Niedu
Mar 30, 2017

lim n a n + 1 a n \large \displaystyle \lim_{n \rightarrow \infty} \left | \frac{a_{n+1}}{a_n} \right |

= lim n ( n + 1 ) ! ( n + 1 ) ! ( 2 n + 2 ) ! ( 2 n ) ! n ! n ! \large \displaystyle = \lim_{n \rightarrow \infty} \left | \frac{(n+1)!(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{n!n!} \right |

= lim n ( n + 1 ) ( n + 1 ) ( 2 n + 2 ) ( 2 n + 1 ) \large \displaystyle = \lim_{n \rightarrow \infty} \left | \frac{(n+1)(n+1)}{(2n+2)(2n+1)} \right |

= lim n n 2 ( 1 + 2 n + 1 n 2 ) n 2 ( 4 + 6 n + 2 n 2 ) \large \displaystyle = \lim_{n \rightarrow \infty} \left | \frac{n^2 \cdot (1 + \frac2n + \frac1{n^2}) }{n^2 \cdot (4 + \frac6n + \frac2{n^2})} \right |

= 1 4 = 0.25 \color{#3D99F6} \boxed{\large \displaystyle = \frac14 = 0.25}

What about bonus

Md Zuhair - 4 years, 2 months ago
Mark Hennings
Mar 31, 2017

The limit being 1 4 \tfrac14 is easy enough. As for the series, look at the solutions given here .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...