⎩ ⎪ ⎨ ⎪ ⎧ x + y + z x 2 + y 2 + z 2 x 3 + y 3 + z 3 = 1 = 2 = 3
Given that x , y , and z satisfy the system of equations above, what is the value of x 4 + y 4 + z 4 ? Give your answer to four significant figures.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
2 ( x y + y z + z x ) = ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) = − 1
x y + y z + z x = 1 / 2
6 x y z = ( x + y + z ) 3 − 3 ( x + y + z ) ( x 2 + y 2 + z 2 ) + 2 ( x 3 + y 3 + z 3 ) = 1
x y z = 1 / 6
x 4 + y 4 + z 4 = ( x 2 + y 2 + z 2 ) 2 − 2 ( x 2 y 2 + y 2 x 2 + z 2 x 2 )
= ( x 2 + y 2 + z 2 ) 2 − 2 ( ( x y + y z + z x ) 2 − 2 x y z ( x + y + z ) )
= 2 2 − 2 ( ( − 1 / 2 ) 2 − 2 ( 1 / 6 ) ( 1 ) )
= 4 − 2 ( 1 / 4 − 1 / 3 )
= 4 + 2 / 1 2
= 4 + 1 / 6
= 2 5 / 6
= 4 . 1 6 6 6 6 6 6 6 6 6 6 6 6 . . . 7
Problem Loading...
Note Loading...
Set Loading...
We can solve this type of problem with Newton's sums (identities) . First let P n = x n + y n + z n , where n is a positive integer. And S 1 = x + y + z , S 2 = x y + y z + z x , and S 3 = x y z . Then we have:
P 1 P 2 P 3 P 4 = S 1 = 1 = S 1 P 1 − 2 S 2 = 1 − 2 S 2 = 2 = S 1 P 2 − S 2 P 1 + 3 S 3 = 2 + 2 1 + 3 S 3 = 3 = S 1 P 3 − S 2 P 2 + S 3 P 1 = 3 + 1 + 6 1 = 6 2 5 ≈ 4 . 1 6 7 ⟹ S 1 = 1 ⟹ S 2 = − 2 1 ⟹ S 3 = − 6 1