A Curious Problem

Algebra Level 3

{ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 \begin{cases} \begin{aligned} x + y + z & = 1 \\ x^2 + y^2 + z^2 & = 2 \\ x^3 + y^3 + z^3 & = 3 \end{aligned} \end{cases}

Given that x x , y y , and z z satisfy the system of equations above, what is the value of x 4 + y 4 + z 4 x^4 + y^4 +z^4 ? Give your answer to four significant figures.


The answer is 4.166666666666666667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 18, 2020

We can solve this type of problem with Newton's sums (identities) . First let P n = x n + y n + z n P_n = x^n+y^n+z^n , where n n is a positive integer. And S 1 = x + y + z S_1 = x+y+z , S 2 = x y + y z + z x S_2 = xy+yz +zx , and S 3 = x y z S_3 = xyz . Then we have:

P 1 = S 1 = 1 S 1 = 1 P 2 = S 1 P 1 2 S 2 = 1 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 + 1 2 + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 3 + 1 + 1 6 = 25 6 4.167 \begin{aligned} P_1 & = S_1 = 1 & \small \blue{\implies S_1 = 1} \\ P_2 & = S_1P_1 - 2S_2 = 1 -2S_2 = 2 & \small \blue{\implies S_2 = - \frac 12} \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 2 + \frac 12 + 3S_3 = 3 & \small \blue{\implies S_3 = - \frac 16} \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = 3 + 1 + \frac 16 = \frac {25}6 \approx \boxed{4.167} \end{aligned}

Hollow Knight
Oct 17, 2020

2 ( x y + y z + z x ) = ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) = 1 2(xy+yz+zx)=(x+y+z)^{2}-(x^{2}+y^{2}+z^{2})=-1

x y + y z + z x = 1 / 2 xy+yz+zx=1/2

6 x y z = ( x + y + z ) 3 3 ( x + y + z ) ( x 2 + y 2 + z 2 ) + 2 ( x 3 + y 3 + z 3 ) = 1 6xyz=(x+y+z)^{3}-3(x+y+z)(x^{2}+y^{2}+z^{2})+2(x^{3}+y^{3}+z^{3})=1

x y z = 1 / 6 xyz=1/6

x 4 + y 4 + z 4 = ( x 2 + y 2 + z 2 ) 2 2 ( x 2 y 2 + y 2 x 2 + z 2 x 2 ) x^{4}+y^{4}+z^{4}=(x^{2}+y^{2}+z^{2})^{2}-2(x^{2}y^{2}+y^{2}x^{2}+z^{2}x^{2})

= ( x 2 + y 2 + z 2 ) 2 2 ( ( x y + y z + z x ) 2 2 x y z ( x + y + z ) ) =(x^{2}+y^{2}+z^{2})^{2}-2((xy+yz+zx)^{2}-2xyz(x+y+z))

= 2 2 2 ( ( 1 / 2 ) 2 2 ( 1 / 6 ) ( 1 ) ) =2^{2}-2((-1/2)^{2}-2(1/6)(1))

= 4 2 ( 1 / 4 1 / 3 ) =4-2(1/4-1/3)

= 4 + 2 / 12 =4+2/12

= 4 + 1 / 6 =4+1/6

= 25 / 6 =25/6

= 4.1666666666666...7 =4.1666666666666...7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...