A Date in the Polar Coordinate System (Part 3)

Calculus Level 4

Part 1

Part 2

Rebecca, on the other hand, thinks the best (Answer to Part 1) (which has equation r = k + k sin θ r=k+k\sin\theta for some k < 0 k<0 ) is the unique one that has equal perimeter and area. This one has a k k value equal to X Y π \dfrac{-X}{Y\pi} . Find X + Y . X+Y.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranshu Gaba
Apr 30, 2015

The arc length and the area of the figure has to equal. As derived in part 2 , the area of the shape is equal to 3 π k 2 2 \dfrac{3\pi k^2}{2} .

To find the arc length, we the formula from θ = 0 \theta = 0 to 2 π 2\pi .

Arc length = α β r 2 + ( d r d θ ) 2 d θ = 0 2 π r 2 + ( d r d θ ) 2 d θ \begin{aligned} \text{Arc length} & = \displaystyle \int _{\alpha} ^{\beta} \sqrt{r^2 +\left( \frac{\mathrm{d}r}{\mathrm{d}\theta} \right) ^2 } ~~\mathrm{d} \theta\\ & = \displaystyle \int _{0} ^{2 \pi} \sqrt{r^2 +\left( \frac{\mathrm{d}r}{\mathrm{d}\theta} \right) ^2 } ~~\mathrm{d} \theta \\\end{aligned}

We know that r = k + k sin θ r = k + k\sin \theta , and d θ d θ = k cos θ \dfrac{\mathrm{d}\theta}{\mathrm{d}\theta} = k \cos \theta . We substitute these values in the last step.

Arc length = 0 2 π ( k + k sin θ ) 2 + ( k cos θ ) 2 d θ = k 0 2 π ( 1 + sin θ ) 2 + ( cos θ ) 2 d θ = k 0 2 π 1 + sin 2 θ + 2 sin θ + cos 2 θ d θ = k 0 2 π 1 + sin 2 θ + 2 sin θ + cos 2 θ d θ \begin{aligned} \text{Arc length} & = \displaystyle \int _{0} ^{2\pi} \sqrt{(k + k \sin \theta)^2 +(k \cos \theta ) ^2 } ~~\mathrm{d} \theta\\ & = |k| \displaystyle \int _{0} ^{2\pi} \sqrt{(1 + \sin \theta)^2 +(\cos \theta ) ^2 } ~~\mathrm{d} \theta\\ & = |k| \displaystyle \int _{0} ^{2\pi} \sqrt{1 + \sin^2 \theta + 2\sin \theta+\cos^2 \theta} ~~\mathrm{d} \theta\\ & = |k |\displaystyle \int _{0} ^{2\pi} \sqrt{1 + \sin^2 \theta + 2\sin \theta+\cos^2 \theta} ~~\mathrm{d} \theta\\ \end{aligned}

We use the identity sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 and take out 2 \sqrt{2} common.

Arc length = k 0 2 π 2 + 2 sin θ d θ = k 2 0 2 π 1 + sin θ d θ \begin{aligned}\text{Arc length} & = |k| \displaystyle \int _{0} ^{2\pi} \sqrt{2 + 2\sin \theta} ~~\mathrm{d} \theta\\ & = |k| \sqrt{2} \displaystyle \int _{0} ^{2\pi} \sqrt{1 + \sin \theta} ~~\mathrm{d} \theta\\ \end{aligned}

To integrate 1 + sin θ 1 + \sin \theta , we first multiply-divide by 1 sin θ 1 - \sin \theta .

Arc length = k 2 0 2 π ( 1 + sin θ ) ( 1 sin θ ) 1 sin θ d θ = k 2 0 2 π cos 2 θ 1 sin θ d θ = k 2 0 2 π cos θ 1 sin θ d θ = k 2 ( 0 π 2 cos θ 1 sin θ d θ + π 2 3 π 2 cos θ 1 sin θ d θ + 3 π 2 2 π cos θ 1 sin θ d θ ) \begin{aligned}\text{Arc length} & = |k| \sqrt{2} \displaystyle \int _{0} ^{2\pi} \sqrt{\frac{(1 + \sin \theta)(1 - \sin \theta)}{1 - \sin \theta}} ~~\mathrm{d} \theta\\ & = k \sqrt{2} \displaystyle \int _{0} ^{2\pi} \sqrt{\frac{\cos^{2} \theta}{1 - \sin \theta}} ~~\mathrm{d} \theta\\ & = |k| \sqrt{2} \displaystyle \int _{0} ^{2\pi}\frac{|\cos \theta|}{ \sqrt{1 - \sin \theta}} ~~\mathrm{d} \theta\\ & = |k| \sqrt{2} \left( \displaystyle \int _{0} ^{\frac{\pi}{2}}\frac{\cos \theta}{ \sqrt{1 - \sin \theta}} ~~\mathrm{d} \theta + \displaystyle \int _{\frac{\pi}{2}} ^{\frac{3\pi}{2}}\frac{- \cos \theta}{ \sqrt{1 - \sin \theta}} ~~\mathrm{d} \theta + \displaystyle \int _{\frac{3\pi}{2}} ^{2\pi}\frac{\cos \theta}{ \sqrt{1 - \sin \theta}} ~~\mathrm{d} \theta \right) \\ \end{aligned}

To solve this, we substitute 1 sin θ = t 1 - \sin \theta = t , and therefore cos θ d θ = d t \cos \theta ~~ \mathrm{d} \theta = - \mathrm{d} t . The limits of integration also change accordingly.

Arc length = k 2 ( 1 0 1 t d t + 0 2 1 t d t + 2 1 1 t d t ) \begin{aligned} \text{Arc length} & = |k| \sqrt{2} \left( \displaystyle \int _{1} ^{0}\frac{-1}{ \sqrt{t}} ~~\mathrm{d} t + \displaystyle \int _{0} ^{2}\frac{1}{ \sqrt{t}} ~~\mathrm{d} t + \displaystyle \int _{2} ^{1}\frac{-1}{ \sqrt{t}} ~~\mathrm{d} t \right) \\ \end{aligned}

Integration of 1 t \dfrac{1}{\sqrt{t}} is equal to 2 t 2 \sqrt{t} . After integrating and applying second fundamental theorem of calculus , we get

Arc length = k 2 ( ( 0 ( 2 ) ) + ( 2 2 0 ) + ( ( 2 ) ( 2 2 ) ) = k 2 ( 2 + 2 2 2 + 2 2 ) = k 2 × 4 2 = 8 k \begin{aligned} \text{Arc length} & = |k| \sqrt{2} \left((0 - (- 2)) + (2\sqrt{2} - 0) + ((-2) - (-2 \sqrt{2}) \right) \\ & = |k| \sqrt{2} \left(2 + 2\sqrt{2} - 2 + 2 \sqrt{2} \right)\\ & = |k|\sqrt{2} \times 4 \sqrt{2} \\ & = 8 |k| \\ \end{aligned}


We now equate this with the area

3 π k 2 2 = 8 k \frac{3\pi k^2}{2} = 8 |k|

k 2 = 16 k 3 π k^2 =\frac{16 |k| }{3 \pi}

k = 16 3 π |k| = \frac{16 }{3 \pi}

k = ± 16 3 π k = \pm \frac{16 }{3 \pi}

However, since it is given that k k is negative, we will take the negative value. Therefore

k = 16 3 π k = \boxed{\dfrac{- 16}{3 \pi}} ~~~ _\square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...