Find
− ∞ ∫ ∞ − ∞ ∫ ∞ e − ( x 2 + y 2 ) d x d y
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Cool! You could have also used the concept of Jacobians, by using polar coordinates substitutions for x and y. (I actually expected that as one of the solutions)
Log in to reply
Your wish is granted, Chandramouli…..6 years later! See my cylindrical coordinates solution above.
You can actually see its the modification of the pdf of a bivariate normal with means 0, sds 1/sqrt(2) each; and they are independent.
Let x 2 + y 2 = r 2 in polar form. Since we are integrating over the entire x y − plane, we require r ∈ [ 0 , ∞ ) , θ ∈ [ 0 , 2 π ] . Thus, the double integration transforms into:
∫ 0 2 π ∫ 0 ∞ r e − r 2 d r d θ = π .
Problem Loading...
Note Loading...
Set Loading...
I = ∬ − ∞ ∞ e − ( x 2 + y 2 ) d x d y
I = ∬ − ∞ ∞ e − x 2 e − y 2 d x d y
I = ∫ − ∞ ∞ e − y 2 d y ∫ − ∞ ∞ e − x 2 d x
I = ∫ − ∞ ∞ e − y 2 ( π ) d y
I = π ∫ − ∞ ∞ e − y 2 d y
I = π π = π = 3 . 1 4 1 5 9