A Definite Integral

Calculus Level 5

Let I n = 0 π / 2 x ( sin x + cos x ) n d x \displaystyle I_n = \int_0^{\pi /2} x( \sin x + \cos x)^n \, dx for positive integer n n . Find 126 I 126 π 2 I 124 \dfrac{126I_{126} - \frac\pi2}{I_{124}} .


The answer is 250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Jul 21, 2019

I n = 0 π / 2 x ( sin ( x ) + cos ( x ) ) n d x I n = 1 2 0 π / 2 ( x ( sin ( x ) + cos ( x ) ) n + ( π 2 x ) ( sin ( π 2 x ) + cos ( π 2 x ) ) n ) d x a b f ( x ) d x = a b f ( a + b x ) d x I n = 1 2 0 π / 2 ( x ( sin ( x ) + cos ( x ) ) n + ( π 2 x ) ( cos ( x ) + sin ( x ) ) n ) d x sin ( π 2 x ) = cos ( x ) , cos ( π 2 x ) = sin ( x ) I n = 1 2 0 π / 2 π 2 ( sin ( x ) + cos ( x ) ) n d x = π 4 0 π / 2 ( 2 c o s ( x π 4 ) ) n d x sin ( x ) + cos ( x ) = 2 c o s ( x π 4 ) I n = π 4 ( 2 ) n π / 4 π / 4 cos n ( u ) d u = π 4 ( 2 ) n 2 0 π / 4 cos n ( u ) d u l e t u = x π 4 a n d cos ( x ) is even function I n = π 2 ( 2 ) n ( 1 n cos n 1 ( x ) s i n ( x ) 0 π / 4 + n 1 n 0 π / 4 cos n 2 ( x ) d x ) cos n ( x ) = 1 n cos n 1 ( x ) s i n ( x ) + n 1 n cos n 2 ( x ) d x I n = π 2 ( 2 ) n ( 1 n ( 1 2 ) n + n 1 n 0 π / 4 cos n 2 ( x ) d x ) I n = π 2 + 2 ( n 1 ) π 4 ( 2 ) n 2 2 0 π / 4 cos n 2 ( x ) d u n I n = π 2 + 2 ( n 1 ) I n 2 n 126 I 126 = 126 π 2 + 250 I 124 126 = π 2 + 250 I 124 126 I 126 π 2 I 124 = π 2 + 250 I 124 π 2 I 124 = 250 \begin{aligned} & I_n = \int_0^{\pi/2}x(\sin(x)+\cos(x))^n\,dx \\ & I_n =\frac{1}{2} \int_0^{\pi/2}\left ( x(\sin(x)+\cos(x))^n + (\frac{\pi}{2}-x)(\sin(\frac{\pi}{2}-x)+\cos(\frac{\pi}{2}-x))^n \right )\,dx && {\color{#D61F06} \int_a^b f(x)dx=\int_a^b f(a+b-x)dx}\\ & I_n =\frac{1}{2} \int_0^{\pi/2}\left ( x(\sin(x)+\cos(x))^n + (\frac{\pi}{2}-x)(\cos(x)+\sin(x))^n \right )\,dx && {\color{#D61F06} \sin(\frac{\pi}{2}-x)=\cos(x),\cos(\frac{\pi}{2}-x)=\sin(x)}\\ & I_n = \frac{1}{2} \int_0^{\pi/2}\frac{\pi}{2}(\sin(x)+\cos(x))^n\,dx = \frac{\pi}{4}\int_0^{\pi/2}\left ( \sqrt{2}\cdot cos(x-\frac{\pi}{4}) \right )^n\, dx && {\color{#D61F06} \sin(x)+\cos(x)=\sqrt{2}\cdot cos(x-\frac{\pi}{4}) }\\ & I_n= \frac{\pi}{4} \left ( \sqrt{2} \right )^n \int_{-\pi/4}^{\pi/4} \cos^n(u)\,du=\frac{\pi}{4} \left ( \sqrt{2} \right )^n 2\int_0^{\pi/4} \cos^n(u)\,du && {\color{#D61F06} let \, u=x-\frac{\pi}{4} \, and \, \cos(x) \text{ is even function}} \\ &I_n=\frac{\pi}{2} \left ( \sqrt{2} \right )^n \left ( \left . \frac{1}{n}\cos^{n-1}(x)sin(x) \right |_0^{\pi/4} +\frac{n-1}{n} \int_0^{\pi/4} \cos^{n-2}(x)\, dx\right ) && {\color{#D61F06} \int \cos^n(x)=\frac{1}{n}\cos^{n-1}(x)sin(x) +\frac{n-1}{n} \int \cos^{n-2}(x)\, dx}\\ &I_n=\frac{\pi}{2} \left ( \sqrt{2} \right )^n\left ( \frac{1}{n} \left ( \frac{1}{\sqrt{2}} \right )^n +\frac{n-1}{n} \int_0^{\pi/4} \cos^{n-2}(x)\, dx \right ) \\ &I_n=\frac{\frac{\pi}{2} + 2(n-1){\color{#3D99F6} \frac{\pi}{4} \left ( \sqrt{2} \right )^{n-2} 2\int_0^{\pi/4} \cos^{n-2}(x)\,du}}{n}\\ &I_n=\frac{\frac{\pi}{2}+2(n-1){\color{#3D99F6} I_{n-2}}}{n}\\ &126I_{126}= 126 \cdot \frac{\frac{\pi}{2}+250I_{124}}{126}=\frac{\pi}{2}+250I_{124}\\ &\frac{{\color{#3D99F6}126I_{126}}-\frac{\pi}{2}}{I_{124}}=\frac{{\color{#3D99F6}\frac{\pi}{2}+250I_{124}}-\frac{\pi}{2}}{I_{124}}=250 \end{aligned}

Nikhil Bn
Jul 10, 2017

[This solution is being edited.]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...