A dejected charged particle!

A charged particle is moving away from a uniformly charged infinite wire along a direction perpendicular to it. Initially, the particle is at a distance L L from the wire moving with a velocity u u . When it is at a distance 2 L 2L , its velocity is found to be 2 u 2u . What will be the velocity of the particle when it is at a distance 4 L 4L from the wire ?

Hint: Assume the uniform charge density of the infinitely long wire to be λ \lambda and the charge on the charged particle to be q q .


Source: IISER model question paper

u 9 u\sqrt{9} u 6 u\sqrt{6} u 7 u\sqrt{7} u 8 u\sqrt{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Swagat Panda
Jun 20, 2017

Relevant wiki: Using Gauss' law to find E-field and capacitance

Electric field due to an infinitely charged wire at a distance x x from it measured perpendicular to it :

E = λ 2 π ϵ 0 x ( Refer to the wiki ) \begin{aligned} \boxed{E=\dfrac{\lambda}{2\pi \epsilon_{0} x}} && \small \left( \text{ Refer to the wiki} \right) \end{aligned}

Total force on the particle due to the charged wire :

F = q λ 2 π ϵ 0 x m a = q λ 2 π ϵ 0 x m v . d v d x = q λ 2 π ϵ 0 x ( a is the acceleration of the particle and a = v . d v d x ) m v . d v = q λ . d x 2 π ϵ 0 x ( 1 ) m u 2 u v d v = q λ 2 π ϵ 0 L 2 L d x x m [ 3 u 2 2 ] = q λ 2 π ϵ 0 [ ln 2 ] ( 2 ) \begin{aligned} & F=\dfrac{q\lambda}{2\pi \epsilon_{0} x} \\&\Rightarrow ma=\dfrac{q\lambda}{2\pi \epsilon_{0} x} \\ & \Rightarrow m v.\dfrac{\mathrm{d}v}{\mathrm{d}x}=\dfrac{q\lambda}{2\pi \epsilon_{0} x} & \small \left(\color{#3D99F6}{a\text{ is the acceleration of the particle and } a=v.\dfrac{\mathrm{d}v}{\mathrm{d}x}} \right) \\& \Rightarrow mv.\mathrm{d}v=\dfrac{q\lambda.\mathrm{d}x}{2\pi \epsilon_{0} x} & \cdots (1) \\ &\Rightarrow m\displaystyle{ \int^{2u}_{u}{v}\mathrm{d}v}=\dfrac{q\lambda}{2\pi \epsilon_{0}}\displaystyle{\int^{2L}_{L}{\dfrac{\mathrm{d}x}{x}}} \\ &m \left[\dfrac{3u^{2}}{2} \right]=\dfrac{q\lambda}{2\pi \epsilon_{0}}\cdot \left[\ln{2}\right] & \cdots(2) \end{aligned}

Using equation ( 1 ) (1) we can have :

m u v f v d v = q λ 2 π ϵ 0 L 4 L d x x m [ v f 2 u 2 2 ] = q λ 2 π ϵ 0 [ ln 4 ] ( 3 ) \begin{aligned} & m\displaystyle{ \int^{v_{f}}_{u}{v}\mathrm{d}v}=\dfrac{q\lambda}{2\pi \epsilon_{0}}\displaystyle{\int^{4L}_{L}{\dfrac{\mathrm{d}x}{x}}} \\ & \Rightarrow m \left[\dfrac{v_{f}^{2}-u^{2}}{2}\right] =\dfrac{q\lambda}{2\pi \epsilon_{0}}\cdot \left[\ln{4}\right] & \cdots(3) \end{aligned}

Now using equation ( 2 ) (2) and ( 3 ) (3) we get the value of v f v_{f} as follows :

Divide equation ( 3 ) (3) by equation ( 2 ) (2) to get :

v f 2 3 u 2 1 3 = 2 v f = u 7 \dfrac{v_{f}^{2}}{3u^{2}}-\dfrac{1}{3}=2 \Rightarrow \boxed{ v_{f}=u\sqrt{7}}

nice explanation ..

mukul tyagi - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...