A delicious limit

Calculus Level 5

lim n 1 n 4 k = 1 2 n ( n 2 + k 2 ) 1 n = b 2 e a tan 1 ( a ) a 2 \large \lim_{n\to \infty} \frac{1}{n^4} \prod_{k=1}^{2n} (n^2+k^2)^{\frac{1}{n}} = b^2 e^{a\tan^{-1}(a)-a^2}

If positive integers a a and b b satisfy the equation above, find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 19, 2019

If X n = 1 n 4 k = 1 2 n ( n 2 + k 2 ) 1 n = k = 1 2 n ( 1 + k 2 n 2 ) 1 n X_n \; = \; \frac{1}{n^4}\prod_{k=1}^{2n} (n^2+k^2)^{\frac1n} \; = \; \prod_{k=1}^{2n}\left(1 + \frac{k^2}{n^2}\right)^{\frac1n} then ln X n = 1 n k = 1 2 n ln ( 1 + k 2 n 2 ) \ln X_n \; =\; \frac{1}{n}\sum_{k=1}^{2n}\ln\left(1 + \frac{k^2}{n^2}\right) and hence lim n ln X n = 0 2 ln ( 1 + x 2 ) d x = [ x ln ( 1 + x 2 ) 2 x + 2 tan 1 x ] 0 2 = 2 ln 5 4 + 2 tan 1 2 \lim_{n \to \infty} \ln X_n \; = \; \int_0^2 \ln(1 + x^2)\,dx \; = \; \Big[x\ln(1+x^2) - 2x + 2\tan^{-1}x\Big]_0^2 \; = \; 2\ln5 - 4 + 2\tan^{-1}2 and hence lim n X n = 5 2 e 2 tan 1 2 2 2 \lim_{n \to \infty} X_n \; = \; 5^2 e^{2\tan^{-1}2 - 2^2} making the answer 2 + 5 = 7 2+5 = \boxed{7} .

it should be -2x after applying integration by parts, and thus -4 in the exponent.

Satyam Bhardwaj - 1 year, 10 months ago

Log in to reply

Thanks for spotting my typo...

Mark Hennings - 1 year, 10 months ago

u stuoid little shit apoon ney under 6 minutes may solve kkiya

Rushil Rajesh - 1 year, 10 months ago

Where is the power 4 in the denomininator

Vasantada Jyothi - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...