A different approach

Calculus Level 5

0 cos ( x 2 ) d x = ? \large\int_0^\infty \cos(x^2) \, dx = \ ?

π 2 \sqrt{\frac \pi 2} π 16 \sqrt{\frac \pi {16}} π 8 \sqrt{\frac \pi 8} π 32 \sqrt{\frac \pi {32}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parth Lohomi
Mar 18, 2018

Consider the contour given by the sector of the circle with radius R and an angle π 4 \frac{\pi}{4} .Then we have

0 = ζ e i z 2 d z = γ 1 e i z 2 d z + γ 2 e i z 2 d z + γ 3 e i z 2 d z 0=\large\int_\zeta e^{i z^2} dz = \large\int_{\gamma_1}\ e^{i z^2} dz+\large\int_{\gamma_2}\ e^{i z^2} dz+\large\int_{\gamma_3}\ e^{i z^2} dz where γ 1 \gamma_1 is the segment along the real axis, γ 2 \gamma_2 is the arc of the sector and γ 3 \gamma_3 is the segment joining R e i π 4 Re^{\frac{i\pi}{4}} with 0.Now,calculating with the natural parameterization , we have 0 R e i z 2 d z + 0 π / 4 e i ( R e i θ ) 2 d θ + 0 1 e i [ R e i π / 4 ( 1 t ) ] 2 ( R e i π / 4 ) d t . \large\int_{0}^{R} e^{i z^2} dz+ \large\int_{0}^{\pi/4} e^{i(Re^{i \theta})^2} d\theta + \large\int_{0}^{1} e^{i[Re^{i\pi/4}(1-t)]^2}(-Re^{i\pi/4}) dt. Obsereve that 0 π / 4 e i ( R e i θ ) 2 d θ 0 π / 4 R e R 2 sin θ d θ \large |\large\int_{0}^{\pi/4} e^{i(Re^{i \theta})^2} d\theta\large| \leq \large\int_{0}^{\pi/4} Re^{-R^2 \sin\theta} d\theta 0 π / 4 R e R 2 ( 2 / π θ d θ ) \leq\large\int_{0}^{\pi/4} R e^{-R^2 (2 /\pi \cdot\theta d\theta)} = π e R 2 / 2 R + π R = \dfrac{-\pi e^{-R^2/2}}{R}+\dfrac{\pi}{R} . Which clearly goes to zero as R tends to infinity.Thus,we have lim R 0 R e i z 2 d z = lim R R e i π / 4 0 1 e i ( R e i π / 4 ( 1 t ) ) 2 d t . ( ) \large\lim_{R\rightarrow \infty}\large \int_0^R e^{iz^2} dz = \large\lim_{R\rightarrow \infty} R e^{i \pi/4} \large\int_0^1 e^{i(Re^{i \pi/4}(1-t))^2} dt. \quad\quad\quad (*) Now, if we do u-substitution,using u = R ( 1 t ) u =R(1-t) , the right hand side becomes lim R R e i π / 4 R 0 e u 2 1 R d u = lim R R e i π / 4 0 R e u 2 1 R d u = lim R e i π / 4 0 R e u 2 d u = e i π / 4 0 e u 2 d u = e i π / 4 π 2 , \begin{aligned}\lim_{R \rightarrow \infty} R e^{i\pi/4}\large \int_R^0 e^{-u^2} \dfrac{-1}{R} du &= \lim_{R\rightarrow \infty} R e^{i\pi/4} \large\int_0^R e^{-u^2} \dfrac{1}{R} du\\ &= \lim_{R \rightarrow \infty} e^{i \pi/4}\large \int_0^R e^{-u^2} du\\ &= e^{i\pi/4}\large \int_0^\infty e^{-u^2} du\\&=e^{i\pi/4}\dfrac{\sqrt{\pi}}{2},\end{aligned} where the last equality follows from the fact that e u 2 e^{-u^2} is even and so 0 e u 2 d u = 1 2 e u 2 d u = 1 2 π . \large\int_0^\infty e^{-u^2} du = \dfrac{1}{2}\large\int_{-\infty}^\infty e^{-u^2} du = \dfrac{1}{2} \sqrt{\pi}. Combining this result with ( ) (*) , we have 0 e i z 2 d z = e i π / 4 π 2 = 2 π 4 + i 2 π 4 . \large\int_0^\infty e^{iz^2} dz = e^{i\pi/4}\dfrac{\sqrt{\pi}}{2} = \dfrac{\sqrt{2\pi}}{4}+ i \dfrac{\sqrt{2\pi}}{4}. So as we are required the integral of cos ( z 2 ) \cos(z^2) we take 0 e i z 2 d z \Re \large\int_0^\infty e^{iz^2} dz i.e 2 π 4 \dfrac{\sqrt{2\pi}}{4} .

@Parth Lohomi Thanks!

Calvin Lin Staff - 3 years, 2 months ago
Shivam Mishra
Apr 14, 2016

Can you submit a complete solution? Thanks!

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...