Given that y = f ( x ) satisfies the following equation:
d x 2 d 2 y + ( d x d y ) 2 = 1
Given further that y = d x d y = 0 at x = 0 , which of the answer options is y = f ( x ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution as @Russell Ngo 's.
d x 2 d 2 y + ( d x d y ) 2 d x d u + u 2 1 − u 2 d u ∫ ( 1 − u ) ( 1 + u ) d u ∫ 2 1 ( 1 − u 1 + 1 + u 1 ) d u − ln ( 1 − u ) + ln ( 1 + u ) ln ( 1 − u 1 + u ) 1 − u 1 + u ( 1 + e 2 x ) d x d y = 1 = 1 = d x = ∫ d x = ∫ d x = 2 x + C = 2 x = e 2 x = e 2 x − 1 Let u = d x d y ⟹ d x d u = d x 2 d 2 y where C is the constant of integration. Since u ( 0 ) = d x d y ∣ ∣ ∣ ∣ x = 0 = 0 ⟹ C = 0 Put back u = d x d y and rearrange.
⟹ y 0 ⟹ y = ∫ e 2 x + 1 e 2 x − 1 d x = 2 1 ln ( 1 + e 2 x ) − ∫ 1 + e 2 x 1 d x = 2 1 ln ( 1 + e 2 x ) − ∫ t ( 1 + t 2 ) 1 d t = 2 1 ln ( 1 + e 2 x ) − ∫ ( t 1 − 1 + t 2 t ) d t = 2 1 ln ( 1 + e 2 x ) − ln t + 2 1 ln ( 1 + t 2 ) + C 1 = ln ( 1 + e 2 x ) − x + C 1 = ln 2 − 0 + C 1 = ln ( 1 + e 2 x ) − x − ln 2 = ln ( 2 1 + e 2 x ) − x Let t = e x ⟹ d t = e x d x Put back t = e x Since y ( 0 ) = 0 ⟹ C 1 = − ln 2
Problem Loading...
Note Loading...
Set Loading...
Let d x d y = g ( x ) ⇒ d x 2 d 2 y = d x d g , we can now rewrite the given equation as:
d x d g + g 2 = 1 ⇔ d x d g = 1 − g 2
⇔ d x = 1 − g 2 d g
⇔ ∫ d x = x = ∫ 1 − g 2 1 d g = 2 1 l n ∣ 1 − g 1 + g ∣ + C 1
Since x = 0 when d x d y = g = 0 , C 1 = 0
⇒ x = 2 1 ∣ 1 − g 1 + g ∣ ⇔ e 2 x = 1 − g 1 + g
⇒ e 2 x ( 1 − g ) = 1 + g
⇒ g = e 2 x + 1 e 2 x − 1
or d x d y = e 2 x + 1 e 2 x − 1
Thus, we have:
∫ d y = y = ∫ e 2 x + 1 e 2 x − 1 d x
Let t = e 2 x ⇒ d t = 2 e 2 x d x = 2 t d x
⇒ y = 2 1 ∫ t ( t + 1 ) t − 1 d t = ∫ t + 1 1 d t − 2 1 ∫ t 1 d t
⇒ y = l n ∣ t + 1 ∣ − 2 1 l n ∣ t ∣ + C 2
⇒ y = l n ( 1 + e 2 x ) − x + C 2
y = 0 when x = 0
⇒ C 2 = − l n 2
⇒ y = l n ( 1 + e 2 x ) − x − l n 2 = − x + l n [ 2 1 ( 1 + e 2 x ) ]