A differential equation that you might have or might not have seen before

Calculus Level 3

Given that y = f ( x ) y = f(x) satisfies the following equation:

d 2 y d x 2 + ( d y d x ) 2 = 1 \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1

Given further that y = d y d x = 0 y=\dfrac{dy}{dx}=0 at x = 0 x=0 , which of the answer options is y = f ( x ) y=f(x) ?

ln ( 1 2 ( 1 + e 2 x ) ) x \ln\left(\frac{1}{2(1+e^{2x})}\right)-x ln ( 1 1 + e 2 x ) x \ln \left(\frac{1}{1+e^{2x}}\right)-x ln ( 1 + e 2 x 2 ) x \ln\left(\frac{1+e^{2x}}2\right)-x ln ( 1 + e 2 x ) x \ln(1+e^{2x})-x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Russell Ngo
Aug 26, 2018

Let d y d x = g ( x ) \frac{dy}{dx} = g(x) \Rightarrow d 2 y d x 2 = d g d x \frac{d^2y}{dx^2}=\frac{dg}{dx} , we can now rewrite the given equation as:

d g d x + g 2 = 1 \frac{dg}{dx} + g^2 = 1 \Leftrightarrow d g d x = 1 g 2 \frac{dg}{dx}=1-g^2

\Leftrightarrow d x = d g 1 g 2 dx=\frac{dg}{1-g^2}

\Leftrightarrow d x = x = 1 1 g 2 d g = 1 2 l n 1 + g 1 g + C 1 \int{dx} = x = \int{\frac{1}{1-g^2}dg} = \frac{1}{2}ln|\frac{1+g}{1-g}| + C_1

Since x = 0 x=0 when d y d x = g = 0 \frac{dy}{dx}=g=0 , C 1 = 0 C_1 = 0

\Rightarrow x = 1 2 1 + g 1 g x=\frac{1}{2}|\frac{1+g}{1-g}| \Leftrightarrow e 2 x = 1 + g 1 g e^{2x}=\frac{1+g}{1-g}

\Rightarrow e 2 x ( 1 g ) = 1 + g e^{2x}(1-g)=1+g

\Rightarrow g = e 2 x 1 e 2 x + 1 g=\frac{e^{2x}-1}{e^{2x}+1}

or d y d x = e 2 x 1 e 2 x + 1 \frac{dy}{dx}=\frac{e^{2x}-1}{e^{2x}+1}

Thus, we have:

d y = y = e 2 x 1 e 2 x + 1 d x \int{dy} = y = \int{\frac{e^{2x}-1}{e^{2x}+1}dx}

Let t = e 2 x t=e^{2x} \Rightarrow d t = 2 e 2 x d x = 2 t d x dt=2e^{2x}dx=2tdx

\Rightarrow y = 1 2 t 1 t ( t + 1 ) d t = 1 t + 1 d t 1 2 1 t d t y= \frac{1}{2}\int{\frac{t-1}{t(t+1)}dt}=\int{\frac{1}{t+1}dt} - \frac{1}{2}\int{\frac{1}{t}dt}

\Rightarrow y = l n t + 1 1 2 l n t + C 2 y=ln|t+1|-\frac{1}{2}ln|t| + C_2

\Rightarrow y = l n ( 1 + e 2 x ) x + C 2 y=ln(1+e^{2x}) -x + C_2

y = 0 y=0 when x = 0 x=0

\Rightarrow C 2 = l n 2 C_2 = -ln2

\Rightarrow y = l n ( 1 + e 2 x ) x l n 2 = x + l n [ 1 2 ( 1 + e 2 x ) ] y= ln(1+e^{2x}) -x -ln2 = \boxed{-x + ln[\frac{1}{2}(1+e^{2x})]}

Chew-Seong Cheong
Aug 27, 2018

Similar solution as @Russell Ngo 's.

d 2 y d x 2 + ( d y d x ) 2 = 1 Let u = d y d x d u d x = d 2 y d x 2 d u d x + u 2 = 1 d u 1 u 2 = d x d u ( 1 u ) ( 1 + u ) = d x 1 2 ( 1 1 u + 1 1 + u ) d u = d x ln ( 1 u ) + ln ( 1 + u ) = 2 x + C where C is the constant of integration. ln ( 1 + u 1 u ) = 2 x Since u ( 0 ) = d y d x x = 0 = 0 C = 0 1 + u 1 u = e 2 x Put back u = d y d x and rearrange. ( 1 + e 2 x ) d y d x = e 2 x 1 \begin{aligned} \frac {d^2y}{dx^2} + \left(\frac {dy}{dx}\right)^2 & = 1 & \small \color{#3D99F6} \text{Let }u = \frac {dy}{dx} \implies \frac {du}{dx} = \frac {d^2y}{dx^2} \\ \frac {du}{dx} + u^2 & = 1 \\ \frac {du}{1-u^2} & = dx \\ \int \frac {du}{(1-u)(1+u)} & = \int dx \\ \int \frac 12 \left(\frac 1{1-u}+\frac 1{1+u}\right) du & = \int dx \\ -\ln(1-u) + \ln(1+u) & = 2x + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \ln \left(\frac {1+u}{1-u} \right) & = 2x & \small \color{#3D99F6} \text{Since }u(0) = \frac {dy}{dx}\bigg|_{x=0} = 0 \implies C = 0 \\ \frac {1+u}{1-u} & = e^{2x} & \small \color{#3D99F6} \text{Put back }u = \frac {dy}{dx} \text{ and rearrange.} \\ (1+e^{2x})\frac {dy}{dx} & = e^{2x} - 1 \end{aligned}

y = e 2 x 1 e 2 x + 1 d x = 1 2 ln ( 1 + e 2 x ) 1 1 + e 2 x d x Let t = e x d t = e x d x = 1 2 ln ( 1 + e 2 x ) 1 t ( 1 + t 2 ) d t = 1 2 ln ( 1 + e 2 x ) ( 1 t t 1 + t 2 ) d t = 1 2 ln ( 1 + e 2 x ) ln t + 1 2 ln ( 1 + t 2 ) + C 1 Put back t = e x = ln ( 1 + e 2 x ) x + C 1 Since y ( 0 ) = 0 0 = ln 2 0 + C 1 C 1 = ln 2 y = ln ( 1 + e 2 x ) x ln 2 = ln ( 1 + e 2 x 2 ) x \begin{aligned} \implies y & = \int \frac {e^{2x}-1}{e^{2x}+1} dx \\ & = \frac 12 \ln (1+e^{2x}) -\color{#3D99F6} \int \frac 1{1+e^{2x}} dx & \small \color{#3D99F6} \text{Let }t = e^x \implies dt = e^x \ dx \\ & = \frac 12 \ln (1+e^{2x}) -\color{#3D99F6} \int \frac 1{t(1+t^2)} dt \\ & = \frac 12 \ln (1+e^{2x}) - \int \left(\frac 1t - \frac t{1+t^2}\right) dt \\ & = \frac 12 \ln (1+e^{2x}) - \ln t + \frac 12 \ln (1+t^2) + C_1 & \small \color{#3D99F6} \text{Put back }t = e^x \\ & = \ln (1+e^{2x}) - x + C_1 & \small \color{#3D99F6} \text{Since }y(0) = 0 \\ 0 & = \ln 2 - 0 + C_1 & \small \color{#3D99F6} \implies C_1 = - \ln 2 \\ \implies y & = \ln (1+e^{2x}) - x - \ln 2 \\ & = \boxed{\ln \left(\dfrac {1+e^{2x}}2\right) - x} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...