A Differential Equation

Calculus Level 2

You are given the differential equation d y d x + y ln x = x x e x \frac{dy}{dx} + y \ln x = x^{-x} e^{-x} and the initial condition y ( 1 ) = 0 y(1) = 0

If the value of y ( 2 ) y(2) can be written in the form e 2 + a b e 2 \dfrac{e^{2}+a}{be^2} determine the value of a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Cole Coupland
Mar 29, 2014

The differential equation is of the form d y d x + y P ( x ) = Q ( x ) \frac{dy}{dx} + yP(x) = Q(x) and therefore the integrating factor method can be used. Let the integrating factor be I ( x ) I(x) .

I ( x ) = e P ( x ) d x = e ln x d x = e x ( ln x 1 ) = x x e x I(x) = e^{\int P(x) \, dx} = e^{\int{\ln{x}} \, dx} = e^{x(\ln{x} - 1)} = x^{x} e^{-x}

Multiplying each side of the differential equation by the integrating factor

d y d x x x e x + y x x e x ln x = e 2 x \frac{dy}{dx} x^{x} e^{-x} + y x^{x} e^{-x} \ln{x} = e^{-2x}

d d x y x x e x = e 2 x \frac{d}{dx} y x^{x} e^{-x} = e^{-2x}

d d x y x x e x d x = e 2 x d x \int \frac{d}{dx} y x^{x} e^{-x} \, dx = \int e^{-2x} \, dx

y x x e x = 1 2 e 2 x + c y x^{x} e^{-x} = -\frac{1}{2} e^{-2x} + c

y = e 2 x + 2 c 2 x x e x y = \frac{- e^{-2x} + 2c}{2x^{x} e^{-x}}

Given that y ( 1 ) = 0 y(1) = 0

0 = e 2 ( 1 ) + 2 c 0 = - e^{-2(1)} + 2c

c = 1 2 e 2 c = \frac{1}{2e^{2}}

Therefore

y = e 2 x + 1 e 2 2 x x e x y = \frac{- e^{-2x} + \frac{1}{e^{2}}}{2x^{x} e^{-x}}

and

y ( 2 ) = e 2 ( 2 ) + 1 e 2 2 ( 2 ) ( 2 ) e ( 2 ) = e 2 1 8 e 2 = e 2 + a b e 2 y(2) = \frac{- e^{-2(2)} + \frac{1}{e^{2}}}{2(2)^{(2)} e^{-(2)}} = \frac{e^{2}-1}{8e^{2}} = \frac{e^{2}+a}{be^{2}}

where

a = 1 a = -1 and b = 8 b = 8

Therefore

a + b = 7 a + b = \boxed{7}

Vince Policarpio
Apr 9, 2014

1) The differential equation is a Bernoulli differential equation, with n = 0, p(x) = ln x, q(x) = (x e)^-x.

2) Using the formula for the Bernoulli differential equation the general equation is: y = [(-1/2) exp (-2x) + C] / [(x^x)(e^-x)].

3) If x = 1, y = 0, then C = (1/2) exp (-2). Therefore the particular becomes: y = [(-1/2) exp (-2x) + (1/2) exp (-2)] / [(x^x)(e^-x)].

4) If x = 2, then y = [(-1/2) exp (-4) + (1/2) exp (-2)] / {2^2)[exp (-2)]}, or y = [ exp(2) - 1] / [8 exp(2)].

5) Equating coefficients: a = -1, b = 8. Therefore, a + b = 7. (Q.E.D.)

it's a + b. so. we have to add 3n. otherwise. we would just have a + b.

Am Kemplin - 1 month, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...