A Difficult One.

Algebra Level 5

S n = 1 2 4 + 1 3 2 4 6 + 1 3 5 2 4 6 8 + n terms \large S_n=\underbrace{\dfrac{1}{2\cdot4}+\dfrac{1\cdot3}{2\cdot4\cdot6}+\dfrac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8}+\cdots}_{n \text{ terms}}

For S n S_n as defined above, S 10 = a b S_{10} = \dfrac ab , where a a and b b are positive coprime integers. Find a + b + 271716 a+b+271716 .

Bonus: Find the closed form of S n S_n then find S S_{\infty} .


The answer is 969969.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 11, 2018

The n n th term in the series is ( 2 n ) ! 2 2 n + 1 n ! ( n + 1 ) ! = 1 2 2 n ( 2 n n ) 1 2 2 n + 2 ( 2 n + 2 n + 1 ) \frac{(2n)!}{2^{2n+1}\,n!\,(n+1)!} \; = \; \frac{1}{2^{2n}}\binom{2n}{n} - \frac{1}{2^{2n+2}}\binom{2n+2}{n+1} and hence the sum to N N terms is S N = 1 2 1 2 2 N + 2 ( 2 N + 2 N + 1 ) S_N \; = \; \frac12 - \frac{1}{2^{2N+2}}\binom{2N+2}{N+1} Thus S 10 = 1 2 1 2 22 ( 22 11 ) = 173965 524288 S_{10} \; = \; \frac12 - \frac{1}{2^{22}}\binom{22}{11} \; = \; \frac{173965}{524288} making the answer 173965 + 524288 + 271716 = 969969 173965 + 524288 + 271716 = \boxed{969969} .

Since 2 2 n ( 2 n n ) 1 n π 2^{-2n}\binom{2n}{n} \sim \frac{1}{\sqrt{n\pi}} as n n \to \infty , using Stirling's approximation, we deduce that lim N S N = 1 2 \lim_{N \to \infty}S_N \; = \; \tfrac12 .

Naren Bhandari
Apr 6, 2018

S 10 = 1 2.4 + 1.3 2.4.6 + + 1.3.6. . 21 2.4.6. . 22 S 10 = 4 3 2.4 + 1.3 ( 6 5 ) 2.4.6. + 1.3.5. ( 8 9 ) 2.4.6.8.10 + + 1.3.6. . 21. ( 22 21 ) 2.4.6. . 22 S 10 = 4 2.4 3 2.4 + 3.6 2.4.6 + 3.5.8 2.4.6.8 3.5.7 2.4.6.8 + 1.3.5. 21 2.4.6 22 S 10 = 1 2 ( 21 ) ! ! ( 22 ) ! ! = 1 2 21 ! 4. ( 11 ! ) 2 = 1 2 88179 524288 S 10 = 173965 524288 = a b S = 1 2 S_{10} = \frac{1}{2.4} + \frac{1.3}{2.4.6} + \cdots + \frac{1.3.6.\cdots. 21}{2.4.6.\cdots. 22} \\ S_{10} = \frac{4-3}{2.4} + \frac{1.3(6-5)}{2.4.6.} +\frac{1.3.5.(8-9)}{2.4.6.8.10}+ \cdots + \frac{1.3.6.\cdots. 21.(22-21)}{2.4.6.\cdots. 22} \\ S_{10} = \frac{4}{2.4} -\frac{3}{2.4} + \frac{3.6}{2.4.6} + \frac{3.5.8}{2.4.6.8} -\frac{3.5.7}{2.4.6.8}+\cdots - \dfrac{1.3.5.\cdots21 }{2.4.6\cdots 22}\\ \implies S_{10} = \dfrac{1}{2} - \dfrac{(21)!!}{(22)!!} = \frac{1}{2} - \frac{21!}{4.(11!)^2} =\frac{1}{2} - \frac{88179}{524288} \\ \therefore S_{10} = \frac{173965}{524288} = \frac{a}{b} \implies S_{\infty} = \frac{1}{2} Hence, the sum of a + b + 271716 = 173965 + 524288 + 271716 = 969969 a+b +271716 = 173965 + 524288+271716= 969969 .


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...