A probability problem by Kshetrapal Dashottar

A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of isosceles triangles with two odd sides.


The answer is 1003.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let ABC be an iso-odd triangle, with AB and BC odd sides. This means that there are an odd number of sides of the 2006-gon between A and B and also between B and C. We say that these sides belong to the iso-odd triangle ABC. At least one side in each of these groups does not belong to any other iso-odd triangle. This is so because any odd triangle whose vertices are among the points between A and B has two sides of equal length and therefore has an even number of sides belonging to it in total. Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each group) to the triangle ABC. To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection. This value can be attained, as shows the example from the first solution.

You toss iso-odd in there without defining it first, which reads a little strange. You might want to say in a separate line something like "We define an iso-odd triangle as an isosceles triangle with two odd sides, that is, the type of shape we are looking to maximize in this problem."

Jason Dyer Staff - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...