A probability problem by A Former Brilliant Member

My coin pocket contains a half dollar, 2 2 quarters, a dime, 4 4 nickels, and 2 2 pennies. In order to pay a $ 0.5 \$0.5 parking charge, I shall draw 3 3 coins from my pocket at random. Find the probability that I shall pull out enough to pay the charge.

Notes:

half-dollar, quarter, dime, nickel and penny are American coins with the following values:

half-dollar = 50 50 cents

quarter = 25 25 cents

dime = 10 10 cents

nickel = 5 5 cents

penny = 1 1 cent

$ 1 \$1 =100 cents

43 120 \dfrac{43}{120} 3 120 \dfrac{3}{120} 1 60 \dfrac{1}{60} 2 15 \dfrac{2}{15}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

In order to pay the parking charge, I must pull out three coins from my pocket with a total value of 50 50 cents or greater. Let H H be the half-dollar, Q Q be the quarter, D D be the dime, N N be the nickel and P P be the penny.

(a) H + Q + Q : H+Q+Q: P r = 1 10 ( 2 9 ) ( 1 8 ) ( 3 ) = 1 120 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(3)=\dfrac{1}{120}

(b) H + Q + D : H+Q+D: P r = 1 10 ( 2 9 ) ( 1 8 ) ( 6 ) = 1 60 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(6)=\dfrac{1}{60}

(c) H + Q + N : H+Q+N: P r = 1 10 ( 2 9 ) ( 4 8 ) ( 6 ) = 1 15 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{4}{8}\right)(6)=\dfrac{1}{15}

(d) H + Q + P : H+Q+P: P r = 1 10 ( 2 9 ) ( 2 8 ) ( 6 ) = 1 30 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{2}{8}\right)(6)=\dfrac{1}{30}

(e) D + Q + Q : D+Q+Q: P r = 1 10 ( 2 9 ) ( 1 8 ) ( 3 ) = 1 120 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(3)=\dfrac{1}{120}

(f) N + Q + Q : N+Q+Q: P r = 4 10 ( 2 9 ) ( 1 8 ) ( 3 ) = 1 30 P_r=\dfrac{4}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(3)=\dfrac{1}{30}

(g) P + Q + Q : P+Q+Q: P r = 2 10 ( 2 9 ) ( 1 8 ) ( 3 ) = 1 60 P_r=\dfrac{2}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(3)=\dfrac{1}{60}

(h) H + D + N : H+D+N: P r = 1 10 ( 1 9 ) ( 4 8 ) ( 6 ) = 1 30 P_r=\dfrac{1}{10}\left(\dfrac{1}{9}\right)\left(\dfrac{4}{8}\right)(6)=\dfrac{1}{30}

(i) H + D + P : H+D+P: P r = 1 10 ( 1 9 ) ( 2 8 ) ( 6 ) = 1 60 P_r=\dfrac{1}{10}\left(\dfrac{1}{9}\right)\left(\dfrac{2}{8}\right)(6)=\dfrac{1}{60}

(j) H + N + N : H+N+N: P r = 1 10 ( 4 9 ) ( 3 8 ) ( 3 ) = 1 20 P_r=\dfrac{1}{10}\left(\dfrac{4}{9}\right)\left(\dfrac{3}{8}\right)(3)=\dfrac{1}{20}

(k) H + N + P : H+N+P: P r = 1 10 ( 4 9 ) ( 2 8 ) ( 6 ) = 1 15 P_r=\dfrac{1}{10}\left(\dfrac{4}{9}\right)\left(\dfrac{2}{8}\right)(6)=\dfrac{1}{15}

(l) H + P + P : H+P+P: P r = 1 10 ( 2 9 ) ( 1 8 ) ( 3 ) = 1 120 P_r=\dfrac{1}{10}\left(\dfrac{2}{9}\right)\left(\dfrac{1}{8}\right)(3)=\dfrac{1}{120}

Finally, the desired probability is,

P r = 1 120 + 1 60 + 1 15 + 1 30 + 1 120 + 1 30 + 1 60 + 1 30 + 1 60 + 1 20 + 1 15 + 1 120 = P_r=\dfrac{1}{120}+\dfrac{1}{60}+\dfrac{1}{15}+\dfrac{1}{30}+\dfrac{1}{120}+\dfrac{1}{30}+\dfrac{1}{60}+\dfrac{1}{30}+\dfrac{1}{60}+\dfrac{1}{20}+\dfrac{1}{15}+\dfrac{1}{120}= 43 120 \boxed{\dfrac{43}{120}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...