An algebra problem by Naren Bhandari

Algebra Level 3

p ( q r ) x 2 + q ( r p ) x + r ( p q ) = 0 \large p(q-r)x^2 + q(r-p)x + r(p-q) = 0

If the equation above has two equal roots, find 1 p + 1 r \dfrac{1}{p} + \dfrac{1}{r} .

2 q \frac{2}{q} 1 q \frac{1}{q} 2 q r \frac{2}{qr} 3 q \frac{3}{q}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Naren Bhandari
Feb 16, 2017

Given that

p ( q r ) x 2 + q ( r p ) x + r ( p q ) = 0 p(q-r)x^2 + q(r-p)x + r(p-q) = 0 Comparing above equation with quadratic equation a x 2 + b x + c = 0 ax^2 + bx + c = 0 we get,

a = p ( q r ) a = p(q-r)

b = q ( r p ) b = q(r-p)

c = r ( p q ) c = r(p-q)

Since the roots are equal so it determinant D = 0 D = 0 i.e; D = b 2 4 a c = 0 D = b^2 - 4ac = 0

Now substituting the value of a a , b b and c c we get

q ( r p ) ) 2 4 ( p r ( q r ) ( p q ) ) = 0 q(r-p))^2 - 4(pr(q-r)(p-q)) = 0

q 2 ( r 2 2 p r + p 2 ) 4 ( p r ( p q q 2 p r + q r ) ) = 0 q^2(r^2 - 2pr + p^2) - 4(pr(pq- q^2 - pr + qr)) = 0

q 2 r 2 2 p r q 2 + p 2 q 2 4 ( p 2 r q p r q 2 p 2 r 2 + p q r 2 ) = 0 q^2r^2 - 2prq^2 + p^2q^2 - 4(p^2rq - prq^2 - p^2r^2 + pqr^2 )= 0

q 2 r 2 + ( 2 p r q 2 + 4 p r q 2 ) + p 2 q 2 4 ( p 2 r q + p q r 2 ) + 4 p 2 r 2 = 0 q^2r^2 + (-2prq^2 + 4prq^2) + p^2q^2 - 4(p^2rq + pqr^2) + 4p^2r^2= 0

( q r + p q ) 2 4 ( q r + p q ) p r + ( 2 p r ) 2 = 0 (qr + pq)^2 - 4(qr + pq)pr + (2pr)^2 = 0

( q r + p q 2 p r ) 2 = 0 (qr +pq -2pr)^2 = 0

q r + p q = 2 p r qr + pq = 2pr

Dividing both p q r pqr we get,

q r p q r + p q p q r = 2 p r p q r \frac{qr}{pqr} + \frac{pq}{pqr} = \frac{2pr}{pqr}

1 p + 1 q = 2 q \frac{1}{p} + \frac{1}{q} = \frac{2}{q}

Md Zuhair
Feb 16, 2017

Elegant approach!

Tapas Mazumdar - 4 years, 3 months ago

Log in to reply

Well, Thankyou

Md Zuhair - 4 years, 3 months ago
Chew-Seong Cheong
Feb 17, 2017

p ( q r ) x 2 + q ( r p ) x + r ( p q ) = 0 Divide both sides by p r ( q r 1 ) x 2 + q ( 1 p 1 r ) x + ( 1 q p ) = 0 \begin{aligned} p(q-r)x^2 + q(r-p)x + r(p-q) & = 0 & \small \color{#3D99F6} \text{Divide both sides by } pr \\ \left(\frac qr -1 \right)x^2 + q \left(\frac 1p -\frac 1r \right)x + \left(1-\frac qp \right) & = 0 \end{aligned}

For the equation to have two equal roots, the discriminant b 2 4 a c = 0 b^2 - 4ac = 0 b 2 = 4 a c \implies b^2 = 4ac :

q 2 ( 1 p 1 r ) 2 = 4 ( q r 1 ) ( 1 q p ) q 2 ( 1 p 2 2 p r + 1 r 2 ) = 4 ( q r q 2 p r 1 + q p ) q 2 ( 1 p 2 + 2 p r + 1 r 2 ) = 4 q ( 1 r + 1 p ) 4 q 2 ( 1 p + 1 r ) 2 = 4 q ( 1 r + 1 p ) 4 \begin{aligned} q^2 \left(\frac 1p -\frac 1r \right)^2 & = 4 \left(\frac qr -1 \right)\left(1-\frac qp \right) \\ q^2 \left(\frac 1{p^2} - \frac 2{pr} + \frac 1{r^2} \right) & = 4 \left(\frac qr - \frac {q^2}{pr} - 1 + \frac qp \right) \\ q^2 \left(\frac 1{p^2} + \frac 2{pr} + \frac 1{r^2} \right) & = 4 q \left( \frac 1r + \frac 1p \right) - 4 \\ q^2\left(\frac 1p + \frac 1r \right)^2 & = 4 q \left( \frac 1r + \frac 1p \right) - 4 \end{aligned}

q 2 ( 1 p + 1 r ) 2 4 q ( 1 p + 1 r ) + 4 = 0 A quadratic equation of q ( 1 p + 1 r ) ( q ( 1 p + 1 r ) 2 ) 2 = 0 q ( 1 p + 1 r ) = 2 1 p + 1 r = 2 q \begin{aligned} \implies q^2\left(\frac 1p + \frac 1r \right)^2 - 4 q \left( \frac 1p + \frac 1r \right) + 4 & = 0 & \small \color{#3D99F6} \text{A quadratic equation of }q \left( \frac 1p + \frac 1r \right) \\ \left(q \left( \frac 1p + \frac 1r \right) - 2\right)^2 & = 0 \\ \implies q \left( \frac 1p + \frac 1r \right) & = 2 \\ \frac 1p + \frac 1r & = \boxed{\dfrac 2q} \end{aligned}

It should be "Divide both sides by p r pr ."

Atomsky Jahid - 4 years, 3 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 4 years, 3 months ago
Spandan Senapati
Feb 17, 2017

The question is too simple.check that x = 1 x=1 is the root so product= 1 1 1*1 .so r ( p q ) = p ( q r ) r(p-q)=p(q-r) .now divide by p q r pqr so 1 / p + 1 / r = 2 / q 1/p+1/r=2/q

Did it the same way!

Ajinkya Shivashankar - 4 years, 3 months ago

Ya!!this is quite easy.isn't it??

Spandan Senapati - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...