A dizzy spiral

Geometry Level 3

The diagram below shows a spiral such that A B B C R S S T AB\perp BC \perp \cdots \perp RS \perp ST .

If A B = 1 AB =1 , B C = 2 BC=2 , \cdots , R S = 18 RS=18 and S T = 19 ST =19 , find the area of E M T \triangle EMT .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 10, 2017

Let the spiral to be on the complex plain with A A being the origin. Let complex number z 1 = x 1 + y 1 i = A B z_1 = x_1 + y_1i = \vec {AB} , z 2 = x 2 + y 2 i = A C z_2 = x_2 + y_2i = \vec {AC} , z 3 = x 3 + y 3 i = A D z_3 = x_3 + y_3i = \vec {AD} and so on, such that B ( x 1 , y 1 ) B(x_1, y_1) , C ( x 2 , y 2 ) C(x_2, y_2) , D ( x 3 , y 3 ) D(x_3, y_3) and so on.

We note that a turning 9 0 90^\circ clockwise is equivalent to multiplying by i -i , therefore, we have z n = 1 + 2 ( i ) + 3 ( i ) 2 + 4 ( i ) 3 + + n ( i ) n 1 = k = 1 n k ( i ) k 1 z_n = 1 + 2(-i) +3(-i)^2 + 4(-i)^3 + \cdots + n(-i)^{n-1} = \sum_{k=1}^n k(-i)^{k-1} , which is the sum of an arithmetic-geometrical progression with initial term a = 1 a=1 , common difference d = 1 d=1 and common ratio r = i r=-i . Therefore,

z n = 1 n ( i ) n 1 + i + ( i ) ( 1 ( i ) n 1 ) ( 1 + i ) 2 = ( 1 n ( i ) n ) ( 1 i ) ( 1 + i ) ( 1 i ) + ( i ) ( 1 ( i ) n 1 ) 2 i = ( i ) n 1 ( n + 1 + n i ) i 2 = ( i ) n ( n + ( n + 1 ) i ) ) i 2 z n = { n 2 + n 2 i for n m o d 4 = 0 n + 1 2 + n 1 2 i for n m o d 4 = 1 n 2 n + 2 2 i for n m o d 4 = 2 n + 1 2 n + 1 2 i for n m o d 4 = 3 \begin{aligned} z_n & = \frac {1-n(-i)^n}{1+i} + \frac {(-i)\left(1-(-i)^{n-1}\right)}{(1+i)^2} \\ & = \frac {\left(1-n(-i)^n \right)(1-i)}{(1+i)(1-i)} + \frac {(-i)\left(1-(-i)^{n-1}\right)}{2i} \\ & = \frac {(-i)^{n-1}(n+1+ni)-i}2 \\ & = \frac {(-i)^n(-n +(n+1)i))-i}2 \\ \implies z_n & = \begin{cases} - \dfrac n2 + \dfrac n2 i & \text{for } n \bmod 4 = 0 \\ \dfrac {n+1}2 + \dfrac {n-1}2 i & \text{for } n \bmod 4 = 1 \\ \dfrac n2 - \dfrac {n+2}2 i & \text{for } n \bmod 4 = 2 \\ -\dfrac {n+1}2 - \dfrac {n+1}2 i & \text{for } n \bmod 4 = 3 \end{cases} \end{aligned}

Now, we have

{ A E = z 4 = 2 + 2 i E ( 2 , 2 ) A M = z 12 = 6 + 6 i M ( 6 , 6 ) A T = z 19 = 10 10 i T ( 10 , 10 ) \begin{cases} \vec {AE} = z_4 = -2 + 2i & \implies E(-2,2) \\ \vec {AM} = z_{12} = -6 + 6i & \implies M(-6,6) \\ \vec {AT} = z_{19} = -10 - 10i & \implies T(-10,-10) \end{cases}

From the coordinates, we can find the area of E M T \triangle EMT as follows:

[ E M T ] = 6 + 2 2 ( 6 + 2 ) + 10 + 6 2 ( 10 + 6 ) + 2 10 2 ( 2 + 10 ) = 4 ( 4 ) 2 ( 4 ) 4 ( 8 ) = 16 + 8 32 = 40 \begin{aligned} [EMT] & = \left| \frac {6+2}2 (-6+2) + \frac {-10+6}2 (-10+6) + \frac {2-10}2 (-2+10) \right| \\ & = \left| 4 (-4) -2(-4) - 4(8) \right| \\ & = \left| -16 +8 -32 \right| \\ & = \boxed{40} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...