A Dizzying Polynomial

Algebra Level 5

P n ( x ) = i = 0 n j = 0 i k = 0 j l = 0 k x l P_n(x)= \prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \prod _{ k=0 }^{ j }{ \sum _{ l=0 }^{ k }{ { x }^{ l } } } } }

For polynomial P n ( x ) P_n (x) as defined above, compute P 5 ( 1 ) P 3 ( 1 ) P 2 ( 1 ) \dfrac {P_5 (1) }{P_3(1) P_2(1) } .


The answer is 4947.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nick Kent
Jul 31, 2019

Let x = 1 x=1 , then:

P n ( 1 ) = i = 0 n j = 0 i k = 0 j l = 0 k 1 l = i = 0 n j = 0 i k = 0 j l = 0 k 1 = i = 0 n j = 0 i k = 0 j ( k + 1 ) = i = 0 n j = 0 i ( j + 1 ) ! { P }_{ n }\left( 1 \right) =\prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \prod _{ k=0 }^{ j }{ \sum _{ l=0 }^{ k }{ { 1 }^{ l } } } } } =\prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \prod _{ k=0 }^{ j }{ \sum _{ l=0 }^{ k }{ { 1 } } } } } =\prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \prod _{ k=0 }^{ j }{ \left( k+1 \right) } } } =\prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \left( j+1 \right) ! } }

Let's refine this expression a little bit:

P n ( 1 ) = i = 0 n j = 0 i ( j + 1 ) ! = i = 0 n j = 1 i + 1 j ! = i = 1 n + 1 j = 1 i j ! { P }_{ n }\left( 1 \right) =\prod _{ i=0 }^{ n }{ \sum _{ j=0 }^{ i }{ \left( j+1 \right) ! } } =\prod _{ i=0 }^{ n }{ \sum _{ j=1 }^{ i+1 }{ j! } } =\prod _{ i=1 }^{ n+1 }{ \sum _{ j=1 }^{ i }{ j! } }

Now that we have a simpler task at hand we can start computing the wanted value:

P 5 ( 1 ) P 3 ( 1 ) P 2 ( 1 ) = i = 1 6 j = 1 i j ! i = 1 4 j = 1 i j ! × i = 1 3 j = 1 i j ! = i = 5 6 j = 1 i j ! i = 1 3 j = 1 i j ! = = ( 1 ! + 2 ! + 3 ! + 4 ! + 5 ! ) × ( 1 ! + 2 ! + 3 ! + 4 ! + 5 ! + 6 ! ) ( 1 ! ) × ( 1 ! + 2 ! ) × ( 1 ! + 2 ! + 3 ! ) = = ( 1 + 2 + 6 + 24 + 120 ) × ( 1 + 2 + 6 + 24 + 120 + 720 ) 1 × ( 1 + 2 ) × ( 1 + 2 + 6 ) = = 153 × 873 1 × 3 × 9 = 4947 \frac { { P }_{ 5 }\left( 1 \right) }{ { P }_{ 3 }\left( 1 \right) { P }_{ 2 }\left( 1 \right) } =\frac { \prod _{ i=1 }^{ 6 }{ \sum _{ j=1 }^{ i }{ j! } } }{ \prod _{ i=1 }^{ 4 }{ \sum _{ j=1 }^{ i }{ j! } } \times \prod _{ i=1 }^{ 3 }{ \sum _{ j=1 }^{ i }{ j! } } } =\frac { \prod _{ i=5 }^{ 6 }{ \sum _{ j=1 }^{ i }{ j! } } }{ \prod _{ i=1 }^{ 3 }{ \sum _{ j=1 }^{ i }{ j! } } } =\\ \\ =\frac { \left( 1!+2!+3!+4!+5! \right) \times \left( 1!+2!+3!+4!+5!+6! \right) }{ \left( 1! \right) \times \left( 1!+2! \right) \times \left( 1!+2!+3! \right) } =\\ \\ =\frac { \left( 1+2+6+24+120 \right) \times \left( 1+2+6+24+120+720 \right) }{ 1\times \left( 1+2 \right) \times \left( 1+2+6 \right) } =\\ \\ =\frac { 153\times 873 }{ 1\times 3\times 9 } =\boxed { 4947 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...