x 1 x 2 x 3 x 4 x n = 2 1 1 , = 3 7 5 , = 4 2 0 , = 5 2 3 , and = x n − 1 − x n − 2 + x n − 3 − x n − 4 when n ≥ 5 ,
Given the recurrence relation above, find the value of x 5 3 1 + x 7 5 3 + x 9 7 5 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We are given that x n = x n − 1 − x n − 2 + x n − 3 − x n − 4 .
This means that x n + 1 = x n − x n − 1 + x n − 2 + x n − 3 = ( x n − 1 − x n − 2 + x n − 3 − x n − 4 ) − x n − 1 + x n − 2 + x n − 3 = − x n − 4
So in general x n = − x n − 5 . Using the given relation, x 5 = 2 6 7 so the sequence 211, 375, 420, 523, 267, -211, -375, -420, -523, -267 repeats. All terms corresponding to values of n that have the same remainder when divided by 10 have the same value in the sequence.
Therefore x 5 3 1 = x 1 = 2 1 1
x 7 5 3 = x 3 = 4 2 0
x 9 7 5 = x 5 = 2 6 7
So x 5 3 1 + x 7 5 3 + x 9 7 5 = 2 1 1 + 4 2 0 + 2 6 7 = 8 9 8
Problem Loading...
Note Loading...
Set Loading...
x n + 4 = x n + 3 − x n + 2 + x n + 1 − x n
x n + 5 = x n + 4 − x n + 3 + x n + 2 − x n + 1
Adding the above 2 equations, x n + 4 + x n + 5 = x n + 4 − x n .
⇒ x n + 5 = − x n ⇒ x n + 1 0 = − x n + 5 = x n .
Hence, the sequence has a period of 10. Therefore,
x 5 3 1 + x 7 5 3 + x 9 7 5
= x 1 + x 3 + x 5
= x 1 + x 3 + ( x 4 − x 3 + x 2 − x 1 )
= x 2 + x 4 = 3 7 5 + 5 2 3 = 8 9 8 .