A Dubicious Recursion?

x 1 = 211 , x 2 = 375 , x 3 = 420 , x 4 = 523 , and x n = x n 1 x n 2 + x n 3 x n 4 when n 5 , \begin{aligned}x_{1}&=211,\\ x_{2}&=375,\\ x_{3}&=420,\\ x_{4}&=523,\ \text{and}\\ x_{n}&=x_{n-1}-x_{n-2}+x_{n-3}-x_{n-4}\ \text{when}\ n\geq5, \end{aligned}

Given the recurrence relation above, find the value of x 531 + x 753 + x 975 x_{531}+x_{753}+x_{975} .

This an old Olympiad problem.


The answer is 898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Utsav Banerjee
Apr 23, 2015

x n + 4 = x n + 3 x n + 2 + x n + 1 x n x_{n+4}=x_{n+3}-x_{n+2}+x_{n+1}-x_{n}

x n + 5 = x n + 4 x n + 3 + x n + 2 x n + 1 x_{n+5}=x_{n+4}-x_{n+3}+x_{n+2}-x_{n+1}

Adding the above 2 equations, x n + 4 + x n + 5 = x n + 4 x n x_{n+4}+x_{n+5}=x_{n+4}-x_{n} .

x n + 5 = x n x n + 10 = x n + 5 = x n \Rightarrow x_{n+5}=-x_{n} \Rightarrow x_{n+10}=-x_{n+5}=x_{n} .

Hence, the sequence has a period of 10. Therefore,

x 531 + x 753 + x 975 x_{531}+x_{753}+x_{975}

= x 1 + x 3 + x 5 =x_{1}+x_{3}+x_{5}

= x 1 + x 3 + ( x 4 x 3 + x 2 x 1 ) =x_{1}+x_{3}+(x_{4}-x_{3}+x_{2}-x_{1})

= x 2 + x 4 = 375 + 523 = 898 =x_{2}+x_{4}=375+523=898 .

Melissa Quail
Jun 4, 2016

We are given that x n = x n 1 x n 2 + x n 3 x n 4 x_{n} = x_{n-1} - x_{n-2} + x_{n-3} - x_{n-4} .

This means that x n + 1 = x n x n 1 + x n 2 + x n 3 = ( x n 1 x n 2 + x n 3 x n 4 ) x n 1 + x n 2 + x n 3 = x n 4 x_{n+1} = x_{n} - x_{n-1} + x_{n-2} + x_{n-3} = (x_{n-1} - x_{n-2} + x_{n-3} - x_{n-4}) - x_{n-1} + x_{n-2} + x_{n-3} = -x_{n-4}

So in general x n = x n 5 x_{n} = -x_{n-5} . Using the given relation, x 5 = 267 x_{5} = 267 so the sequence 211, 375, 420, 523, 267, -211, -375, -420, -523, -267 repeats. All terms corresponding to values of n that have the same remainder when divided by 10 have the same value in the sequence.

Therefore x 531 = x 1 = 211 x_{531} = x_{1} = 211

x 753 = x 3 = 420 x_{753} = x_{3} = 420

x 975 = x 5 = 267 x_{975} = x_{5} = 267

So x 531 + x 753 + x 975 = 211 + 420 + 267 = 898 x_{531} + x_{753} + x_{975} = 211+420+267 = \boxed{898}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...