Find sum of all positive integers , and primes such that
.
For example, if the solutions are and then the answer will be
This is a INMO problem.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f 1 = m ( 4 m 2 + m + 1 2 ) − 3 ( p n − 1 ) m ∣ x , 1 , 5 0 p n I l e t p v a r y f r o m 5 , 7 , 1 1 , 1 3 , 1 7 a n d n = 1 t o 7 . x w a s a d j u s t e d s o i n t h e l i s t f o r f t h e r e w e r e b o t h + t i v e a n d − t i v e v a l u e s . E x c e p t f o r ( 1 2 , 4 , 7 ) , f j u m p e d f r o m + t i v e t o − t i v e v a l u e s . B e l o w t h e r e l e v a n t o b s e r v a t i o n s ( m , n , p ) . . . . . . . . . . f m = . . . . . . + t i v e ( m + 1 , n , p ) . . . . . f m + 1 = . . . . − t i v e ( 1 , 1 , 7 ) . . . . . f 1 = 1 , ( 2 , 2 , 7 ) . . . . . f 2 = 8 4 , ( 6 , 3 , 7 ) . . . . . f 6 = 5 4 ( 2 , 1 , 7 ) . . . . . f 2 = − 4 2 , ( 3 , 2 , 7 ) . . . . . f 3 = − 9 , ( 7 , 3 , 7 ) . . . . . f 7 = − 4 7 9 , ( 1 1 , 4 , 7 ) . . . . . f 1 1 = 1 6 2 3 ( 1 2 , 4 , 7 ) . . . . . f 1 2 = 0 , ( 1 3 , 4 , 7 ) . . . . . f 1 3 = − 1 9 1 3 , ( 2 3 , 5 , 7 ) . . . . . f 2 3 = 9 4 5 , ( 1 , 1 , 1 1 ) . . . . . f 1 = 1 3 , ( 9 , 3 , 1 1 ) . . . . . f 9 = 8 8 5 , e c t . ( 2 4 , 5 , 7 ) . . . . . f 2 4 = − 5 7 4 2 , ( 2 , 1 , 1 1 ) . . . . . f 2 = − 3 0 , ( 1 0 , 3 , 1 1 ) . . . . . f 1 0 = − 2 3 0 , e c t . B e l o w i s t h r o u g h g r a p h . S w e e p i n g a n d c h e c k i n g b y m a g n i f y i n g t o s e e w h e r e x = w i s a n i n t e g e r .