A factorial summation

Algebra Level 2

n = 1 2018 n ! n = ? \large \sum_{n=1}^{2018} n! \cdot n = ?

2019!-1 2019! 2018!+2019! 2019!+1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Santi Spadaro
Aug 9, 2018

Note that n ! n = n ! ( n + 1 1 ) = n ! ( n + 1 ) n ! = ( n + 1 ) ! n ! n! \cdot n= n! \cdot (n+1-1)= n!(n+1)-n!=(n+1)!-n! . Therefore the summation from the statement of the problem can be written as 2 ! 1 ! + 3 ! 2 ! + 4 ! 3 ! + . . . + 2019 ! 2018 ! 2!-1!+3!-2!+4!-3!+...+2019!-2018! , which after simplifying gives 2019 ! 1 2019!-1 .

Chew-Seong Cheong
Aug 12, 2018

S = n = 1 2018 n ! n = n = 1 2018 n ! ( n + 1 1 ) = n = 1 2018 ( ( n + 1 ) ! n ! ) = 2019 ! 1 ! = 2019 ! 1 \begin{aligned} S & = \sum_{n=1}^{2018} n! \cdot n = \sum_{n=1}^{2018} n! (n+1-1) = \sum_{n=1}^{2018} ((n+1)! - n!) = 2019! - 1! = \boxed{2019!-1} \end{aligned}

(n+1)!=n! (n+1)=n! n+n!

...

n!*n=(n+1)!-n!

sum(n!*n)=sum((n+1)!-n!)

sum((n+1)!-n!)=sum((n+1)!)-sum(n!)

sum((n+1)!)=sum(n!)+(n+1)!

Here the result must be 2019!

Olexander Danchuk - 5 months, 2 weeks ago

Log in to reply

Consider n = 1 3 ( n + 1 ) ! = 2 ! + 3 ! + 4 ! = 32 \displaystyle \sum_{n=1}^3 (n+1)! = 2! + 3! + 4! = 32 and n = 1 3 n ! + ( 3 + 1 ) ! = 1 ! + 2 ! + 3 ! + 4 ! = 33 32 \displaystyle \sum_{n=1}^3 n! + (3+1)! = 1! + 2! + 3! + 4! = 33 \red{\ne 32} , n = 1 N ( n + 1 ) ! n = 1 N n ! + ( N + 1 ) ! \displaystyle \implies \sum_{n=1}^N (n+1)! \red \ne \sum_{n=1}^N n! + (N+1)!

Chew-Seong Cheong - 5 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...