A Family of Integrals

Calculus Level 3

Let { I n } n 0 \left\{ I_n\right\}_{n\geq 0} be the set of integrals whose elements have the form
I n = 0 1 x 2019 ln ( x ) n d x , n Z + . I_n = \int_0^1 x^{2019} \ln(x)^{n}\,dx ,\,\, n \in \mathbb{Z}^+. The infinite sum of the reciprocals of each element in { I n } n 0 \left\{ I_n\right\}_{n\geq 0} give the following series n = 0 1 I n = a e b \sum_{n=0}^{\infty} \frac{1}{I_n} = \frac{a}{e^{b}} where a a and b b are positive integers. What is a + b a+b ?

4040 2019 2020 4038

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 25, 2019

Given that

I n = 0 1 x 2019 ln 2 x d x Let e u = x e u d u = d x = 0 e 2020 u u n d u Let t = 2020 u d t = 2020 d u = 0 ( t ) n e t 201 0 n + 1 d t Gamma function Γ ( s ) = 0 t s 1 e t d t = ( 1 ) n 202 0 n + 1 Γ ( n + 1 ) Since Γ ( n ) = ( n 1 ) ! = ( 1 ) n n ! 202 0 n + 1 \begin{aligned} I_n & = \int_0^1 x^{2019}\ln^2 x\ dx & \small \blue{\text{Let }e^u = x \implies e^u \ du = dx} \\ & = \int_{-\infty}^0 e^{2020 u} u^n \ du & \small \blue{\text{Let }t = -2020 u \implies dt = - 2020\ du} \\ & = \int_0^\infty \frac {(-t)^n e^{-t}}{2010^{n+1}} dt & \small \blue{\text{Gamma function }\Gamma (s) = \int_0^\infty t^{s-1}e^{-t} dt} \\ & = \frac {(-1)^n}{2020^{n+1}} \Gamma (n+1) & \small \blue{\text{Since }\Gamma (n) = (n-1)!} \\ & = \frac {(-1)^nn!}{2020^{n+1}} \end{aligned}

Therefore, n = 0 1 I n = n = 0 2020 ( 2020 ) n n ! = 2020 e 2020 = 2020 e 2020 a + b = 2020 + 2020 = 4040 \displaystyle \sum_{n=0}^\infty \frac 1{I_n} = \sum_{n=0}^\infty \frac {2020(-2020)^n}{n!} = 2020 e^{-2020} = \frac {2020}{e^{2020}} \implies a + b = 2020+2020 = \boxed{4040} .


Reference: Gamma function

Vincent Moroney
Dec 25, 2019

Consider the function I ( t ) I(t) given by I ( t ) = 0 1 x t d x , t 0 I(t) = \int_0^1 x^t\,dx, \,\, t\geq 0 then via the Leibniz rule of differentiation under the integral sign we may write d n d t n I ( t ) = d n d t n 0 1 x t d x = 0 1 n t n x t d x = 0 1 x t ln ( x ) n d x \frac{d^n}{dt^n} I(t) = \frac{d^n}{dt^n}\int_0^{1}x^t\,dx = \int_0^1 \frac{\partial^n}{\partial t^n} x^t\,dx = \int_0^1 x^t \ln(x)^{n}\,dx Therefore the value we seek is the n n th derivative of I ( t ) I(t) evaluated at t = 2019 t=2019 . Doing this is simple since I ( t ) I(t) is a simple integration: I ( t ) = 0 1 x t d x = 1 t + 1 , t 0. I(t) = \int_0^1 x^t\,dx = \frac{1}{t+1}, \,\, t\geq 0. Simple patterning will reveal that the n n th derivative of I ( t ) I(t) is d n d t n I ( t ) = ( 1 ) n n ! ( t + 1 ) n + 1 \frac{d^n}{dt^n} I(t) = \frac{(-1)^n n!}{(t+1)^{n+1} } Therefore I n I_n is I ( n ) ( 2019 ) I^{(n)}(2019) , i.e each element in the set { I n } \left\{I_n\right\} may be written as I n = ( 1 ) n n ! ( 2020 ) n + 1 1 I n = ( 1 ) n 202 0 n + 1 n ! I_n = \frac{(-1)^n n!}{(2020)^{n+1}} \Longrightarrow \frac{1}{I_n} = \frac{(-1)^n 2020^{n+1}}{n!} The requested sum is therefore n = 0 1 I n = n = 0 ( 1 ) n 202 0 n + 1 n ! = 2020 n = 0 ( 1 ) n 202 0 n n ! \sum_{n=0}^{\infty} \frac{1}{I_n} = \sum_{n=0}^{\infty} \frac{(-1)^n 2020^{n+1}}{n!} = 2020\sum_{n=0}^{\infty} \frac{(-1)^n 2020^{n}}{n!} Direct comparison with the Taylor series for e x e^x about x = 0 x=0 : e x = n = 0 x n n ! e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} reveals that the requested sum is: n = 0 1 I n = 2020 e 2020 = 2020 e 2020 . \sum_{n=0}^{\infty}\frac{1}{I_n} = 2020e^{-2020} = \frac{2020}{e^{2020}}. Therefore a + b = 4040 \boxed{ a+ b = 4040}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...