A fascinating equation!!

Algebra Level 2

If ( a 2 + b 2 ) 3 = ( a 3 + b 3 ) 2 (a^{2} + b^{2})^{3} = (a^{3} + b^{3})^{2} where a and b are real numbers other than zero, then find the numerical or absolute value of 3 ( a b + b a ) 3( \frac{a}{b} + \frac{b}{a}) .


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sandeep Rathod
Nov 16, 2014

a 6 + b 6 + 3 a 2 b 2 ( a 2 + b 2 ) = a 6 + b 6 + 2 a 3 b 3 a^{6} + b^{6} + 3a^{2}b^{2}(a^{2} + b^{2}) = a^{6} + b^{6} + 2a^{3}b^{3}

a 2 b 2 ( 3 a 2 + 3 b 2 2 a b ) = 0 a^{2}b^{2}(3a^{2} + 3b^{2} - 2ab) = 0

a 3 b 3 ( 3 a b + 3 b a 2 ) = 0 a^{3}b^{3}(3\frac{a}{b} + 3\frac{b}{a} - 2) = 0

Expanding the equation,we get: a 6 + 3 a 4 b 2 + 3 a 2 b 4 + b 6 = a 6 + 2 a 3 b 3 + b 6 a^6+3a^4b^2+3a^2b^4+b^6=a^6+2a^3b^3+b^6 Simplifying,we get: 3 a 2 b 2 ( a 2 + b 2 ) = 2 a 3 b 3 3a^2b^2(a^2+b^2)=2a^3b^3 3 ( a 2 + b 2 ) = 2 a b 3(a^2+b^2)=2ab 3 ( a 2 + b 2 a b ) = 2 3\left(\frac{a^2+b^2}{ab}\right)=2 3 ( a 2 a b + b 2 a b ) = 2 3\left(\frac{a^2}{ab}+\frac{b^2}{ab}\right)=2 3 ( a b + b a ) = 2 3\left(\frac{a}{b}+\frac{b}{a}\right)=\boxed{2}

Harsh Soni
Nov 16, 2014

Soooo easy.....

This is a solution?

Abdur Rehman Zahid - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...