A Fascinating Integral

Calculus Level 3

R { 0 } R \mathbb{R} - \{0\} \to \mathbb{R} is a differentiable function such that:

1 x y f ( t ) d t = y 1 x f ( t ) d t + x 1 y f ( t ) d t \int_{1}^{xy} f(t) dt = y\int_{1}^{x}f(t)dt + x\int_{1}^{y}f(t)dt x , y ( R ) { 0 } a n d f ( 1 ) = 1 \forall x, y \in \mathbb(R) - \{0\} \hspace{2mm} and \hspace{2mm} f(1) = 1

Function g is defined as:

g ( x ) = ( e f ( x 2 ) 1 + ( e f ( 1 x 2 ) 1 ) ) g(x) = -\bigg(e^{f(x^2)-1} + \bigg(e^{f(\frac{1}{x^2}) - 1} \bigg)\bigg)

If I ( P ) = P 1 / P e g ( x ) d x I(P) = \int\limits_{P}^{1/P}e^{g(x)}dx then, find lim P 0 + I ( P ) \lim\limits_{P \to 0^+} I(P) )

Enter your answer to five decimal places.


The answer is 0.119937.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Atman Kar
Apr 20, 2018

Differentiating the expression 1 x y f ( t ) d t = y 1 x f ( t ) d t + x 1 y f ( t ) d t \int_{1}^{xy} f(t) dt = y\int_{1}^{x}f(t)dt + x\int_{1}^{y}f(t)dt wrt x x on both sides using Newton-Leibniz formula, we get y f ( x y ) = y f ( x ) + 1 y f ( t ) d t yf(xy) = yf(x) + \int_{1}^y f(t) dt

Put x = 1 x = 1 , we get,

y f ( y ) = y + 1 y f ( t ) d t yf(y) = y + \int_{1}^y f(t) dt ( f ( 1 ) = 1 ) \hspace{5mm} (\because f(1) = 1)

Again differentiating the above expression wrt y y (and using Newton-Leibniz again),

f ( y ) + y f ( y ) = 1 + f ( y ) f(y) + yf'(y) = 1 + f(y)

y f ( y ) = 1 \implies yf'(y) = 1

f ( y ) = 1 y \implies f'(y) = \frac{1}{y}

Integrating on both the sides we get,

f ( y ) = l o g ( y ) + C f(y) = log(y) + C

Since f ( 1 ) = 1 f(1) = 1 ,

f ( y ) = l o g ( y ) + 1 f(y) = log(y) + 1

Substituting this into g ( x ) g(x) we get,

g ( x ) = ( x 2 + 1 x 2 ) g(x) = -({x}^2 + \frac{1}{x^2})

So now, we have to find I I where,

I = 0 e ( x 2 + 1 x 2 ) d x I = \int_{0}^\infty e^{-(x^2 + \frac{1}{x^2})} dx

Writing x 1 x x \rightarrow \frac{1}{x} ,

I = 0 e ( x 2 + 1 x 2 ) 1 x 2 d x I = \int_{0}^\infty e^{-(x^2 + \frac{1}{x^2})} \frac{1}{x^2} dx

On adding these two equations,

2 I = 0 e ( x 2 + 1 x 2 ) ( 1 + 1 x 2 ) d x 2I = \int_{0}^\infty e^{-(x^2 + \frac{1}{x^2})} (1 + \frac{1}{x^2}) dx

Writing ( x 2 + 1 x 2 ) = ( x 1 x ) 2 + 2 ({x}^2 + \frac{1}{x^2}) = (x - \frac{1}{x})^2 + 2 ,

2 I = 0 e ( x 1 x ) 2 2 ( 1 + 1 x 2 ) d x 2I = \int_{0}^\infty e^{-(x - \frac{1}{x})^2 - 2} (1 + \frac{1}{x^2}) dx

2 e 2 I = 0 e ( x 1 x ) 2 ( 1 + 1 x 2 ) d x \implies 2{e}^2I = \int_{0}^\infty e^{-(x - \frac{1}{x})^2} (1 + \frac{1}{x^2}) dx

Substitute, ( x 1 x ) t (x - \frac{1}{x}) \rightarrow t and changing the limits accordingly, we get,

2 e 2 I = e t 2 d t 2{e}^2I = \int_{-\infty}^{\infty} e^{-t^2} dt

e t 2 d t \int_{-\infty}^{\infty} e^{-t^2} dt is the famous Gaussian Integral,

e t 2 d t = π \int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt\pi

Using this we get that,

I = π 2 e 2 0.119937.... I = \frac{\sqrt\pi}{2e^2} \approx 0.119937....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...